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Executive Summary 

The Atmospheric Emitted Radiance Interferometer (AERI) Optimal Estimation (AERIoe) algorithm 
(Turner and Löhnert 2014, Turner and Blumberg 2019) retrieves profiles of temperature and water vapor 
mixing ratio, together with cloud properties for a single-layer cloud (i.e., liquid water path [LWP], 
effective radius), from AERI-observed infrared radiance spectrum and other measurements. The data can 
be used to characterize the evolution of the planetary boundary layer and boundary-layer clouds. 
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Acronyms and Abbreviations 
AER Atmospheric and Environmental Research 
AERI atmospheric emitted radiance interferometer 
AERIoe Atmospheric Emitted Radiance Interferometer Optimal Estimation VAP 
AERIPROF Atmospheric Emitted Radiance Interferometer Profiles of Water Vapor and 

Temperature VAP 
AMF ARM Mobile Facility 
ARM Atmospheric Radiation Measurement 
CAPE convectively available potential energy 
CIN convective inhibition 
CLDTYPE Cloud Type VAP 
DISORT Discrete Ordinate Radiative Transfer Program for a Multi-Layered Plane-Parallel 

(Medium) 
GoAmazon Green Ocean Amazon 2014/15 field campaign 
IDL Interactive Data Language 
IR infrared 
KAZR Ka-band ARM Zenith Pointing Radar 
LBLRTM Line-By-Line Radiative Transfer Model 
LWP liquid water path 
MET surface meteorological instrumentation 
MIXCRA mixed-phase cloud property retrieval algorithm 
MonoRTM Monochromatic Radiative Transfer Model 
MPL micropulse lidar 
MWR microwave radiometer 
MWR3C 3-channel microwave radiometer 
MWRLOS 2-channel microwave radiometer 
MWRRET Microwave Radiometer Retrievals VAP 
NWP numerical weather prediction 
PECAN Plains Elevated Convection at Night campaign 
QC quality control 
RAP rapid refresh model 
RHUBC-2 second Radiative Heating in Underexplored Bands Campaign 
RMS root mean square 
SGP Southern Great Plains 
TCCON Total Carbon Column Observing Network 
TSI total sky imager 
UTC Coordinated Universal Time 
VAP value-added product 
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1.0 Introduction 
The AERIoe algorithm (Turner and Löhnert 2014, Turner and Blumberg 2019) retrieves boundary-layer 
profiles of temperature and water vapor mixing ratio, together with cloud properties for a single-layer 
cloud (i.e., LWP, effective radius), from AERI-observed infrared radiance spectra and other 
measurements. The current AERIoe Value-Added Product (VAP) uses version 2.8 of David Turner's 
code, which uses additional inputs to constrain the retrieval including surface meteorology, microwave 
radiometer brightness temperatures at any number of frequencies (the U.S. Department of Energy 
Atmospheric Radiation Measurement [ARM] user facility typically used observations at 23.8 and 
30.0 GHz), and Rapid Refresh numerical weather prediction model output. The method is a 
physical-iterative retrieval that uses the optimal estimation framework (Rodgers 2000), so a full error 
covariance of the solution and the information content (in the form of degrees of freedom for signal) is 
provided for each retrieval.  

AERIoe offers a number of improvements over the Atmospheric Emitted Radiance Interferometer 
Profiles of Water Vapor and Temperature (AERIPROF) VAP (Feltz et al. 2003) that is ARM’s current 
data product for thermodynamic profiles from the AERI. First, AERIoe is not limited to clear-sky cases, 
and is able to retrieve thermodynamic profiles in cloudy conditions by also retrieving the cloud properties 
simultaneously (Turner and Löhnert 2014). The algorithm, when both AERI and microwave radiometer 
(MWR) data are used as input, retrieves the LWP of clouds over the entire range of LWP with less than 
20% uncertainty (Turner 2007), including those less than 60 g m-2, a critical need for shallow cumulus 
measurements. Second, the use of a weighting factor in the optimal estimation methodology is less 
sensitive to having a good initial guess to implement in the forward model (Turner and Löhnert 2014). 
This gives higher accuracy, and also allows the VAP to be run at sites beyond ARM’s Southern Great 
Plains (SGP) atmospheric observatory, something that has not been done with AERIPROF. Finally, the 
optimal estimation methodology produces uncertainties, including a full error covariance matrix, and 
fields related to the vertical distribution of the information content along with the thermodynamic 
profiles. 

2.0 Input Data 
The primary input to this code is AERI downwelling infrared radiance spectra, from the AERI 
Noise Filter datastream (Turner et al. 2006). Additional AERI quality information is taken from 
aeriengineer and aerisum files.  

The AERI measures downwelling spectral infrared radiance in the wavelength range 3.3-19.2 microns 
(520-3020 cm-1 wavenumbers). This is the terrestrial radiation (LW) wavelength range, so it provides a 
great deal of information about temperature and humidity profiles in the boundary layer, and liquid water 
for liquid water paths less than 60 g m-2 or so (Turner 2007). Details of the AERI, including how it is 
calibrated, are provided by Knuteson et al. (2004 a,b), and in the ARM AERI Instrument Handbook 
(https://www.arm.gov/publications/tech_reports/handbooks/aeri_handbook.pdf).  

In addition to infrared (IR) spectra from the AERI, the 23.8 and 30 GHz channels of the 
microwave radiometer are used to help better constrain the precipitable water vapor and liquid 

https://www.arm.gov/publications/tech_reports/handbooks/aeri_handbook.pdf
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water path for liquid water paths above about 60 g m-2. The ARM facility has deployed different 
MWRs at different sites, and the AERIoe algorithm can use MWR observations at any 
frequency. At the SGP Central Facility, we are currently using the 2-channel microwave 
radiometer (MWRLOS), and at the SGP extended facilities we are using the 3-channel 
microwave radiometers (MWR3C).  

Surface temperature and relative humidity are taken from the 2 m surface meteorological instrumentation 
(MET) data available at nearly all ARM sites and facilities.  

Cloud base heights come either from the ceilometer when available (e.g., SGP Central Facility) or from 
alternative lidar sources such as the Doppler lidar at SGP boundary facilities. 

Finally, we use averaged model output from the rapid refresh (RAP) model (Benjamin et al. 2016) from 
4 km to 20 km to constrain the thermodynamic profiles of the upper atmosphere since the AERI has very 
little information content above the boundary layer. 

AERIoe is able to include other inputs, such as Raman lidar thermodynamic profiles, into its observation 
vector as part of the retrieval (Turner and Blumberg 2019). Currently, these other observations are not 
being used operationally by ARM in this version, but may be included in the future. Note that the AERIoe 
algorithm can be run at any of the ARM sites that contain an AERI (e.g., Turner and Blumberg 2019 
analyzed data from the ARM sites at Oliktok Point, Alaska and the ARM Mobile Facility [AMF] 
deployment to the Green Ocean Amazon 2014/15 [GoAmazon] campaign in Brazil), but currently only 
the SGP data are being processed by this algorithm. 

3.0 Output Data 
The VAP output files contain primary scientific variables, random uncertainty estimates as output by the 
algorithm, some calculated thermodynamic profile parameters (relative humidity, potential temperature, 
equivalent potential temperature, dew point temperature), variables related to the information content of 
the observations (e.g., degrees of freedom for signal, true vertical resolution of the retrieved profiles, and 
Shannon information content), and a number of diagnostic variables that describe the state of the retrieval. 
In the current version, the primary scientific output variables are temperature, humidity profiles, liquid 
water path, liquid cloud effective radius, and their uncertainties as listed in Table 1. 

In general, the files have been left in a similar format to the output from Dr. Turner’s native code, with 
minor adjustments to meet ARM standards. We have left in some empty variables that are currently not 
retrieved (i.e., are disabled in this implementation in the ARM data system due to their research nature) 
but may be in the future, such as ice cloud properties (ice cloud optical depth, ice effective radius) and 
trace gas concentrations (CO2, CH4, N2O). 
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Table 1. Table of primary scientific variables currently output by the retrieval algorithm. 

4.0 Algorithm Overview 
The AERIoe algorithm is described in detail elsewhere (Turner and Löhnert 2014, Turner and Blumberg 
2019), but will be summarized here. The algorithm uses an optimal estimation approach (Rodgers 2000) 
to simultaneously retrieve temperature and water vapor profiles, as well as cloud LWP and effective 
radius for liquid clouds, from observational data including AERI radiances in the wavenumber bands 
listed in Table 2. Version 1 of the algorithm (Turner and Löhnert, 2014) used only AERI radiances and 
cloud base height as input, but version 2 of the algorithm (Turner and Blumberg, 2019) incorporates 
various other observational inputs including surface MET observations, partial profiles from NWP model 
output, and microwave radiometer brightness temperatures. Version 2.8 is used in the VAP currently and 
incorporates the inputs described in Section 2 of this technical report. 

This is a physical-iterative retrieval method. The retrieval of thermodynamic profiles from spectral 
radiance observations is an ill-posed problem, and thus constraints need to be included in the retrieval 
algorithm to provide physically plausible results. Here, we use a climatology derived from radiosonde 
profiles collected at the measurement site as our prior information. At the SGP site, where radiosondes 
have been launched for nearly 30 years, monthly climatology “a priori” files have been computed, 
wherein data from three months centered upon the month desired are used to compute the level-to-level 
covariance in the a priori. For example, to compute the a priori input file for July, all of the radiosonde 
data launched at the SGP Central Facility between 2000 and 2015 from June, July, and August were used 
in the calculation of the a priori. Over 2000 radiosondes have been used to compute the a priori for each 
month at the SGP. 

As the method uses an optimal estimation framework, a full error covariance matrix of each solution is 
included in the output file. The 1-sigma uncertainty of each retrieved variable, which is derived from the 
error covariance matrix, is included for each scientific field and is named "sigma_X", where "X" is the 
name of the scientific field (e.g., 'temperature').   
  

Variable Description Uncertainty variable 

temperature Temperature profile (degC) sigma_temperature 

waterVapor Water vapor mixing ratio profiles (g kg-1) sigma_waterVapor 

lwp Liquid water path (g m-2) sigma_lwp 

lReff Liquid water effective radius (microns) sigma_lReff 
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Table 2. Wavenumber bands used in retrieval, based on Table 1 of Turner and Blumberg (2019). 

Wavenumber band (cm-1) Primary sensitivity 

538-588 Water vapor 

612-618 Temperature 

624-660 Temperature 

674-722 Temperature 

828-835 Clouds 

843-848 Clouds 

860.1-864 Clouds 

872.2-877.5 Clouds 

898.2-905.4 Clouds 

4.1 Prior Values 

Prior temperature and humidity profiles come from monthly climatologies created from radiosonde data. 
These will be fixed for a given site. All times of day and cloud conditions are averaged together to form 
the climatologies. The vertical resolution of the prior profiles is also the same as the vertical grid output 
by the retrieval. The prior includes covariances between the variable at a given height and other heights in 
the profile. The a priori computed at the SGP Central Facility is also used when processing data from the 
SGP extended facility sites. 

The assumed a priori cloud properties are currently set to values of LWP= 0 ±50 g m-2, and 
Reff = 8±4 µm. There is assumed to be no correlation between cloud properties and thermodynamic 
profiles in the prior. 

4.2 Assumed Inputs 

Cloud base height is taken from ceilometer measurements for a 20-minute interval. If no cloud base is 
found, this is expanded to a 180-minute interval. Finally, if no measured cloud base height is found, a 
default value of 2 km is used. Cloud base height is not adjusted by the retrieval in this version, and any 
uncertainty in cloud base height is not included in the uncertainty estimates.  

Additionally, height independent values of CO2, CH4, and N2O concentrations are set in the config file. 
Total column CO2 concentration is estimated from a statistical model fit to Mauna Loa data that accounts 
for both the general increase in CO2 over time and the annual cycle. Currently, constant values of 
1.793±0.0538 ppm and 0.310±0.0093 ppm are used for CH4 and N2O respectively. These are based on 
measurements from the Total Carbon Column Observing Network (TCCON) at SGP. These are left 
constant and not simultaneously retrieved in the operational version, though there is the potential to also 
retrieve these values in the future. Due to the location of the absorption bands of CH4 and N2O, and the 
spectral regions used in the retrieval (Table 2), there is virtually no sensitivity of the retrieved profiles to 
these assumed concentrations. 
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4.3 Forward Model 

The Line-By-Line Radiative Transfer Model (LBLRTM; Clough and Iacono, 1995) from AER 
(https://rtweb.aer.com/lblrtm_frame.html) is used to model the infrared radiances. We are currently using 
version 12.1. Version 12.8 is also now currently available but the differences between versions 12.1 and 
12.8 in the spectral regions being used for this application are small, so we have chosen to continue using 
12.1. The LBLRTM has been improved and validated extensively using data from many of the ARM sites 
(e.g., Mlawer and Turner 2016, and is able to simulate AERI observations well. 

The Monochromatic Radiative Transfer Model (MonoRTM; Clough et al. 2005) from Atmospheric and 
Environmental Research (AER) (https://rtweb.aer.com/monortm_frame.html) is used as the forward 
model for the microwave frequencies used in the retrieval. We are currently using model version 5.2. This 
model has also been improved and extensively validated using ARM data (e.g., Payne et al. 2011, Turner 
et al. 2016). 

The retrieval is currently run for AERI wavenumber bands given in Table 2. These are the same 
wavenumber bands used for the AERIPROF retrieval except the 1250-1350 cm-1 band is used by 
AERIPROF but not in AERIoe. This is because this wavenumber band is strongly influenced by 
scattering from cloud particles (Turner and Löhnert 2014), and only absorption (not scattering) is 
currently implemented in the forward model used in AERIoe. 

5.0 Interpretation of the Data and Quality Control 
There are several important things to note when interpreting the AERIoe data. 

First, the information content in the AERI observations, which is in the degrees of freedom for signal 
("dfs") field, on the thermodynamic profiles is primarily concentrated in the lowest 3 km or up to cloud 
base; the retrieved data should not be used above that level (or used with caution). 

Second, the true vertical resolution is not the same as the vertical height grid used in the retrievals. The 
weighting functions for downwelling radiance observations often peak near the surface and thus the 
vertical resolution of the retrieved profiles decreases quickly with height. The actual vertical resolution of 
the retrieval is estimated from the averaging kernel computed by the retrieval algorithm, and are stored in 
the variables “vres_temperature” and “vres_watervapor” in the output file. Examples of the vertical 
resolution are shown in Turner and Löhnert (2014). 

Third, the retrieval should only be used when the run converges. There is an overall "qc_flag" field; 
however, the logic that sets this flag is still being developed and should not be used at this time. Instead, a 
more straightforward way to determine when the data can be used is to consider all retrievals that have a 
value for "converged_flag" greater than 0 and less than 9 as valid. Furthermore, there are two root mean 
square (RMS) fields that compare the observations with the forward calculation using the final retrieved 
fields (“rmsr” and “rmsa”), where the former compares only the radiance observations from the AERI and 
MWR whereas the latter compares the entire observation vector (which could contain surface MET and 
NWP data as well) with the forward calculation. Generally, only samples where the “rmsr” field is less 
than 5 should be used, but retrievals with values larger than this threshold may still contain useful 
information. 

https://rtweb.aer.com/lblrtm_frame.html
https://rtweb.aer.com/monortm_frame.html
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Finally, uncertainty values are given for each of the primary scientific variables by the optimal estimation 
algorithm. Please note, however, that these only include the correlated error propagated through from the 
prior, the random error in the observations, and the sensitivity of the forward model. There are several 
known conditions that cause systematic errors in the current retrieval. Ice clouds can cause biases in the 
liquid water path retrievals, if ice water contents are retrieved as liquid water. Additionally, due to the 
decrease in the vertical resolution with altitude, the AERIoe may not be able to resolve elevated 
inversions or localized gradients away from the surface. For example, the AERIoe-retrieved profiles may 
not resolve the inversion layer at the top of the convective boundary layer because the actual vertical 
resolution at that altitude may be 1 km or more. However, that information is still in the retrieved profile, 
as integrated values such as mixed-layer Convectively Available Potential Energy (CAPE) and 
Convective Inhibition (CIN) computed from AERIoe-retrieved profiles compare reasonably well with 
values computed from co-located radiosonde data (Blumberg et al. 2017). 

More details on the evaluation of the retrieval can be found in Turner and Blumberg (2019) and users are 
encouraged to read this reference before using the data. 

6.0 Examples 
The primary scientific variables from the AERIoe VAP are the cloud liquid water path and droplet 
effective radius, and boundary-layer thermodynamic profiles. We show examples of these variables here 
to show the strengths of the new data set. 

6.1 Liquid Water Path Retrievals 

Figure 1 shows the liquid water path retrieved from three different instruments and algorithms on a day 
with partially cloudy shallow cumulus clouds (see supporting data in Figures 2 and 3 to describe cloud 
conditions). The AERIoe retrieval is particularly useful for cases such as these with clouds with small 
liquid water paths (here ~70 g/m2 and less). The AERIoe VAP (Figure 1, blue line) shows clear spikes in 
LWP between about 17:00 and 23:59 UTC consistent with when active sensors (Figure 2) and total sky 
imager (TSI; Figure 3) show liquid clouds. The retrievals from the 2-channel (green) or 3-channel (red) 
microwave radiometers often miss these spikes. Additionally, when no cloud is overhead, the AERIoe 
algorithm gives a LWP retrieval of zero, but both microwave radiometer retrievals show biases. The 
Microwave Radiometer Retrievals (MWRRET) algorithm (Turner et al. 2007) applied to the 2-channel 
MWR (green line) does a reasonable job at removing the larger biases but significantly more noise can be 
seen in the data and the measurements miss most of the shallow cumulus clouds due to insufficient 
sensitivity at 23 and 30 GHz to low LWP. The 3-channel MWR retrieval (red line) does not include bias 
corrections currently, so while the more sensitive 89 GHz channel sometimes catches the low-LWP 
clouds, keeping that channel bias-corrected is a significant challenge.  
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Figure 1. Example liquid water path retrievals from the AERIoe VAP (blue), the 3-channel microwave 

radiometer (red), and the MWRRET retrieval from the 2-channel microwave radiometer 
(green) from the SGP site on July 8, 2018. This day has scattered shallow cumulus clouds as 
confirmed in Figures 2 and 3. 
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Figure 2. Ka-band ARM Zenith Pointing Radar (KAZR) radar reflectivity (top panel) with ceilometer 

lowest cloud base height overlaid with black +s, identified cloud types from the Cloud 
Type (CLDTYPE) VAP (Lim et al. 2019, 
https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-200.pdf) using KAZR and 
micropulse lidar (MPL) cloud boundaries (middle panel), and precipitation measurements 
(bottom panel) show July 8, 2018 at SGP is a day with scattered shallow cumulus between 
17:00 and 23:59 UTC. 

https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-200.pdf
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Figure 3. TSI opaque (green line top panel) and optically thin (blue line top panel) cloud fraction on 

July 8, 2018 at SGP. Partially cloudy skies are seen between around 17:00 and 23:59 UTC 
with TSI thumbnail images showing shallow cumulus clouds during this period. Bottom 
panel shows when the solar elevation is sufficiently high for good TSI retrievals. 

6.2 Boundary-Layer Thermodynamic Profile Retrievals 

Sample thermodynamic retrievals from the AERIoe retrieval are shown in Figure 4 for the same day 
(July 8, 2018) at SGP. One of the major advantages of the AERIoe retrieval is the high temporal 
resolution of the thermodynamic profile retrievals in the boundary layer. The VAP is run here at the 
native resolution of the AERI, or approximately 20 s frequency. The diurnal heating of the boundary layer 
can be seen in the temperature retrieval (Figure 4, top panel), along with a decrease in humidity in the 
afternoon once clouds begin to form. 
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Figure 4. Boundary-layer thermodynamic profile retrievals from AERIoe at the SGP site on 

July 8, 2018. Temperature (top panel), relative humidity (middle panel), and water vapor 
mixing ratio (bottom panel) are shown. Note that the algorithm retrieves temperature and 
water vapor mixing ratio, and that the RH field is derived from the retrieved fields. The 
temporal resolution is high (approximately 20 s resolution) but the vertical resolution is fairly 
coarse, decreasing with range above the surface. 

Comparison between radiosonde and AERIoe profile retrievals in the boundary layer shows that the 
AERIoe algorithm captures the overall profile quite well (e.g., Figure 5 showing an early morning 
profile), but can miss details that require high-resolution information, such as the humidity change at the 
top of the boundary layer in late afternoon (Figure 6) due to the vertical resolution of the retrieved 
profiles. 
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Figure 5. Sample radiosonde (black) and AERIoe-retrieved (red) boundary-layer profiles of 

temperature (left), water vapor mixing ratio (second from left), relative humidity (second 
from right), and potential temperature (right). Profiles are shown at 11:29 UTC, or 6:26 am 
local time. Temperature and water vapor profiles agree quite well within the coarse vertical 
resolution of the AERIoe retrieval. 

 
Figure 6. Same as Figure 5, but for a profile in the late afternoon, 20:27 UTC, 3:27 pm local time. Note 

that the AERIoe retrieval cannot capture the sharp gradient in water vapor at the top of the 
boundary layer due to insufficient resolution/information content, but still captures the 
average profile well. 

Several studies have used AERIoe retrievals to improve our understanding of atmospheric phenomena. 
Generally speaking, these studies take advantage of the high temporal resolution of the retrievals, and the 
limitation of the coarse vertical resolution can be accounted for by using the data where there is 
information content (i.e., by considering the uncertainty information and vertical resolution fields that are 
provided with the output). Here are some examples: 

• Toms et al. (2017) used the high temporal resolution of the AERIoe product, together with a 
collocated Doppler lidar, to get horizontal winds, to look at the properties of convectively generated 
gravity waves/undular bores that passed over the instrument site. In particular, they demonstrated that 
the uncertainties in the AERIoe and Doppler lidar observations were small enough that ducting layers 
in the lower troposphere could be identified robustly. Haghi et al. (2019) argue that a network of 
thermodynamic profilers such as the AERI using this algorithm are required if the community is to 
really understand these types of gravity waves and improve their impacts on weather forecasts. 
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• How the boundary layer evolves from a preconvective to convective environment is one of the 
outstanding scientific questions facing the severe weather community. Several studies have used 
AERIoe retrievals to gain insight into this evolution. One such example (Grasmick et al. 2018) looked 
at how the boundary layer evolved during the passage of a mesoscale convective storm, and in 
particular how this storm impacted the evolution of the stable boundary layer. 

• Assimilating AERIoe thermodynamic profiles provides a unique opportunity to improve a mesoscale 
analysis, and hence improve a weather forecast. Hu et al. (2019) assimilated AERIoe and Doppler 
lidar profiles from the Plains Elevated Convection at Night (PECAN) campaign, which was supported 
by ARM (Geerts et al. 2017), to greatly improve the forecast of an EF3 tornado. Coniglio et al. (2019) 
assimilated AERIoe and Doppler lidar data for 12 isolated supercell storms, demonstrating that the 
assimilation of these advanced data sets improved the forecasts in 11 of those storms. 

• Accurate thermodynamic profiles are needed to evaluate and improve radiative transfer models. 
During the second Radiative Heating in Underexplored Bands Campaign (RHUBC-2), the AERIoe 
retrievals were used to improve the temperature profiles used in the lowest 1 km of the boundary 
layer, which was required before the spectroscopy in the far-infrared portion of the spectrum could be 
evaluated and improved (Mlawer et al. 2019). 

• The high temporal resolution of the AERIoe thermodynamic retrievals was used to evaluate how the 
boundary layer evolved during the 2017 solar eclipse (Turner et al. 2018). In particular, during that 
“rapid sunset/rapid sunrise” event, the AERIoe data showed that a shallow (less than 200 m) stable 
boundary layer developed, which contributed to the development of a low-level-jet-like wind feature. 

• AERIoe-retrieved cloud properties are also being used in the development and evaluation of new 
subgrid-scale schemes used in numerical weather prediction models (Angevine et al. 2018). 

7.0 Needs for Future Development 
The current version of the AERIoe algorithm that is implemented in the ARM VAP is version 2.8. Since 
the ARM VAP was implemented, Dr. Turner has made additional improvements and is currently running 
version 2.11 of AERIoe, with minor improvements over 2.8. 

In addition, several planned improvements to AERIoe in the future include updating the code to: 

• Perform the retrieval on two time-scales: one for retrieving thermodynamic profiles and one for cloud 
property retrievals. The assumption is that the thermodynamic profiles do not need to be retrieved as 
often as cloud properties, and therefore that separating the retrieval into the two time-scales (the 
frequency of the two determined by the input parameter file) will improve the speed of the algorithm. 
This should allow for more focused development for cloud retrievals versus thermodynamic profiles.  

• The inclusion of a first-order treatment for scattering into the forward radiative transfer model. This 
will help improve cloud property retrievals, particularly of ice clouds, and help to better distinguish 
liquid and ice clouds in the liquid and water path retrievals. The goal is to have the same accuracy at 
cloud property retrievals as the mixed-phase cloud property retrieval algorithm (MIXCRA; Turner 
2005), which uses a Discrete Ordinate Radiative Transfer Program for a Multi-Layered Plane-Parallel 
(Medium) (DISORT) as the radiative transfer algorithm. (DISORT could be used within AERIoe, but 
that would make the retrieval about three orders of magnitude more computationally expensive.) 
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• Port the code from the Interactive Data Language (IDL) to the Python programming language. This 
work, already underway, would enable the algorithm to be run more easily on cluster-based, 
high-performance computing systems as the port would eliminate the need for each node to have 
access to an IDL license. 

Lastly, we plan on implementing the AERIoe at all ARM sites that include an AERI. An important part of 
this work will be the development of a priori data sets at each location to constrain the retrieval. 

ARM will continue to work with Dr. Turner on incorporating new versions of the code in the future as 
these developments become available and meet the needs of ARM’s priorities. 
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