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Acronyms and Abbreviations 

ACF autocovariance function 
AGL above ground level 
ARM Atmospheric Radiation Measurement 
CBH cloud-base height 
DLWSTATS Doppler lidar vertical velocity statistics 
DOE U.S. Department of Energy 
ECOR eddy correlation flux measurement system 
MET surface meteorological instrumentation 
NAN not-a-number 
PPI plan-position-indicator 
QC quality control 
SGP Southern Great Plains 
SNR signal-to-noise ratio 
VAP value-added product 
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1.0 Introduction 
Height-resolved measurements of clear-air vertical velocity variance, skewness and kurtosis are crucial to 
understanding turbulent mixing in the atmospheric boundary layer, convective initiation, and cloud life 
cycles. Instrumented towers can provide accurate measurements of these quantities, but their vertical 
coverage is generally limited to a small fraction of the lower boundary layer. By contrast, ground-based 
remote sensors, such as Doppler lidars, can provide height-resolved measurements of vertical velocity 
through the depth of the atmospheric boundary layer with more than sufficient resolution to observe the 
inertial subrange of turbulence. 

The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) user facility 
currently operates several Doppler lidars at sites around the globe. These instrument produce range-
resolved measurements of radial velocity, signal-to-noise-ratio (SNR), and attenuated backscatter. The 
SNR is the ratio of the energy contained in the signal portion of the Doppler spectrum to energy contained 
in the noise floor over the passband of the receiver, and is useful in identifying poor-quality radial 
velocity data. 

The ARM Doppler lidars are operated with a fixed scan schedule consisting of vertical stares and plan-
position-indicator (PPI) scans. The PPI scans are performed once every 10 or 15 minutes (depending on 
the site), and take about 40 seconds to execute. The rest of the time is spent staring vertically, providing 
measurements of clear-air vertical velocity profiles in the lower troposphere with a temporal resolution of 
about 1 second and a height resolution of 30 m. These raw measurements are processed to yield height-
resolved estimates of vertical velocity variance, skewness, and kurtosis. 

The Doppler lidar vertical velocity statistics (DLWSTATS) value-added product (VAP) contains height- 
and time-resolved estimates of vertical velocity variance, skewness, and kurtosis as computed from the 
raw 1-second data. Additionally, the VAP also contains estimates of cloud properties, including cloud-
base height, cloud fraction, cloud-base vertical velocity, and cloud-base updraft fraction. This report 
documents the methods used in deriving these quantities. 

2.0 Input Data 
The DLWSTATS algorithm reads in data from the following ARM datastreams:  

• <site>dlfpt<facility>.b1 

• <site>ceil25k<facility>.b1 

• <site>30ecor<facility>.b1 

• <site>met<facility>.b1 

Specific variables that are used from each of these datastreams are listed in Tables 1 through 4. 
  



RK Newsom et al., April 2019, DOE/SC-ARM-TR-149 

2 

Table 1. Variables and global attributes from the <site>dlfpt<facility>.b1 datastream used by the 
DLWSTATS algorithm. 

Variable Name Description Units 
base_time seconds since 1970-1-1 0:00:00 0:00 sec 
time_offset Time offset from base_time sec 
Range Distance from Lidar to center of range gate m 
Elevation Beam elevation deg 
radial_velocity Radial velocity ms-1 
Intensity Intensity (signal-to-noise-ratio + 1) unitless 
Alt Altitude above mean sea level m 
dlat (global attribute) Lidar latitude in double precision deg 
dlon (global attribute) Lidar longitude in double precision deg 

Table 2. Variables and global attributes from the <site>vceil25k<facility>.b1 datastream used by the 
DLWSTATS algorithm. 

Variable Name Description Units 
base_time seconds since 1970-1-1 0:00:00 0:00 Sec 
time_offset Time offset from base_time Sec 
first_cbh Lowest cloud-base height detected m 
Lat Ceilometer latitude deg 
Lon Ceilometer longitude deg 
Alt Ceilometer altitude M 

Table 3. Variables and global attributes from the <site>30ecor<facility>.b1 datastream used by the 
DLWSTATS algorithm. 

Variable Name Description Units 
base_time seconds since 1970-1-1 0:00:00 0:00 sec 
time_offset Time offset from base_time sec 
mean_t 30-min averaged temperature K 
mean_q 30-min averaged water vapor density mmol m-3 
var_rot_u Variance of easting velocity component m2s-2 
var_rot_v Variance of northing velocity component m2s-2 
var_rot_w Vertical  velocity variance m2s-2 
ustar Friction velocity ms-1 
skew_w vertical velocity skewness unitless 
kurt_w vertical velocity kurtosis unitless 
cvar_rot_wt covariance of vertical velocity and temperature K ms-1 
cvar_rot_wq covariance of vertical velocity and water vapor 

density 
mmol m-2 s-1 

Lat ECOR latitude deg 
Lon ECOR longitude deg 
Alt ECOR altitude m 
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Table 4. Variables and global attributes from the <site>met<facility>.b1 datastream used by the 
DLWSTATS algorithm. 

Variable Name Description Units 
base_time seconds since 1970-1-1 0:00:00 0:00 Sec 
time_offset Time offset from base_time Sec 
pwd_precip_rate_mean_1min 1-min mean precipitation rate mm hr-1 
Lat MET latitude Deg 
Lon MET longitude Deg 
Alt MET altitude M 

3.0 Algorithm and Methodology 
The DLWSTATS algorithm reads in vertical staring data from the <site>dlfpt<facility>.b1 datastream 
and computes vertical velocity and cloud statistics using a 30-minute averaging interval. For a given site, 
the algorithm processes one 24-hour period at a time and produces a single netCDF output file per day. 
Although the algorithm uses a 30-minute averaging period, it reports results at 10-minute intervals. Thus, 
the resulting profiles are oversampled by a factor of 3 (i.e., every third sample is independent). No 
averaging is performed in the height dimension; thus the height resolution of the VAP is equal to that of 
the raw data in the <site>dlfpt<facility>.b1 datastream, which is typically 30 minutes. 

It is worth mentioning that the algorithm screens the staring data to ensure that the beams are in fact 
vertical. In general, the <site>dlfpt<facility>.b1 datastream may contain either vertical or slant-path 
staring data from the Doppler lidar. Although slant paths are not routinely performed, they may be 
performed occasionally. It is therefore good practice to verify that the beam elevation angle is within 
about 0.2o of 90o. 

The ARM Doppler lidars operate in the near infrared and are sensitive to scattering from aerosol and 
relatively insensitive to molecular scattering. As a result, reliable clear-air radial velocity measurements 
are usually constrained to the lower troposphere where aerosol concentrations are typically much higher. 
The DLWSTATS algorithm is therefore configured to process clear-air vertical velocity statistics up to a 
maximum height of 4 km. By contrast, strong scattering from cloud bases enables reliable estimates of 
cloud base vertical velocities up to the maximum sensing height of 10 km. 

3.1 Vertical Velocity Variance 

Noise fluctuations in the radial velocity measurements can have a significant impact on higher-order 
statistical moments. The noise generally increases with increasing range and decreasing signal-to-noise 
ratio (SNR). To deal with the noise, the DLWSTATS algorithm applies a noise correction procedure in 
the computation of the vertical velocity variance.  

For a given range gate, a 30-min time series of vertical velocity is extracted from the 
<site>dlfpt<facility>.b1 datastream. The observed vertical velocity can be written 

 ŵ w n= +   (1) 
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where w  is the true vertical velocity, and n  is the noise. If the noise is random and correlated with w , 
then the observed “total” variance is given by 

 
2 2 2
ŵ w nσ σ σ= +   (2) 

where 2
wσ  is the true atmospheric variance, and 2

nσ  is the variance of the noise. The DLWSTAT algorithm 

estimates the noise variance, 2
nσ , for each range gate and averaging interval and then subtracts that from 

the observed variance to obtain the noise-corrected atmospheric variance, i.e., 2 2 2
ˆw w nσ σ σ= − . 

The noise variance (also known as precision) is computed using the technique described by Lenschow et 
al. (2000) and Pearson et al. (2009). In this method, the noise contribution to the total variance is 
estimated from the autocovariance function (ACF) of the 30-minute vertical velocity time series. The ith 
lag of the ACF is given by 

 

1

0

1 N i

i j i j
j

ACF w w
N i

− −

+
=

=
− ∑

, (3) 

where N is the number of samples in the time series. The ACF is useful for distinguishing between the 
noise and atmospheric contributions because random uncorrelated noise in the signal manifests itself as a 
delta function spike in the zeroth lag of the ACF. 

Computation of the ACF requires that the data be evenly sampled in time. In practice, gaps exist in the 
vertical staring data record because the lidar periodically performs other scans. Thus prior to computing 
the ACF, these gaps are filled with uniformly spaced not-a-number (NAN) samples. These NAN samples 
help to preserve the spacing between samples. 

The DLWSTATS algorithm computes the first six lags of the ACF. The variance due to atmospheric 
motion is estimated by extrapolating the ACF in lags one through five to the zeroth lag, as illustrated in 
Figure 1. This extrapolation is done by fitting a straight line to the ACF in lags one through five. The 
noise contribution to the total variance is then obtained by simply taking the difference between the zeroth 
lag and the extrapolated atmospheric variance. The DLWSTATS algorithm saves these noise estimates, 
and the corresponding median SNR values (for the same 30-minute time series) to the final VAP output 
file. 
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Figure 1. The process for estimating the atmospheric and noise contributions to the observed total 

variance. Panel (a) shows the raw time series; panel (b) shows the corresponding ACF. The 
dotted red line in (b) represents the straight-line fit to lags 1 through 5. 

The noise generally increases with decreasing SNR up to the limit imposed by the receiver bandwidth. 
Figure 2 shows estimates of the radial velocity noise standard deviation (i.e., radial velocity precision) as 
a function of the median SNR for the Doppler lidar at the ARM Southern Great Plains (SGP) site Central 
Facility (Halo Photonics StreamLine, S/N 0710-07) on 9 June 2015. The median SNR is computed for the 
same 30-minute averaging interval as the ACF. We note that all of the ARM Doppler lidars exhibit very 
similar behavior in terms of noise versus SNR. 

 
Figure 2. Radial velocity noise standard deviation (i.e., precision) estimates as a function of SNR for 

the Doppler lidar at the SGP Central Facility. Also indicated are regions with SNR<0.008 and 
noise>1 ms-1. Data that fall into these regions should be rejected. 
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The DLWSTATS VAP contains the noise, median SNR, and the non-quality-controlled corrected 
variance fields. To apply quality control to the data, users should filter the corrected variances based on 
either the noise or the median SNR fields, or both. Figure 2 shows those regions (SNR<0.008 and/or 
noise>1.0 ms-1) where data should be rejected. We typically use an SNR threshold of around 0.008, 
and/or a noise threshold of about 1 ms-1. These thresholds are effective at removing most of the poor-
quality measurements. 

Figure 3 displays examples of the total variance, noise, and atmospheric (noise-corrected) variance during 
a three-day period at the SGP site. The effect of the noise correction is clear by comparing Figures 3a and 
3c. The atmospheric variance field shown in Figure 3c has been filtered using a noise threshold of 1 m s-1.  

 
Figure 3. Time-height displays showing the (a) total variance, (b) noise variance, and (c) corrected 

atmospheric variance at SGP over a three-day period from 28 through 30 August, 2012. The 
atmospheric variance field (c) has been filtered to remove data corresponding to noise 
variances greater than 1 m2s-2. 

3.2 Vertical Velocity Skewness and Kurtosis 

The vertical velocity skewness and kurtosis are the normalized third- and forth-order moments, 
respectively. Skewness is defined by 

 

( )3

3
w

w w
S

σ
−

=
, (4) 

and kurtosis defined by 
 

 

( )4

4
w

w w
K

σ
−

=
. (5) 

The sign of S can indicate whether turbulence is driven by surface heating or cloud-top cooling. When the 
boundary layer is driven by surface heating, S tends to be positive. Positive S implies that updrafts tend to 
be narrower and more intense than the broader, weaker downdrafts (Hogan et al. 2009). 

Kurtosis quantifies the frequency with which extreme values occur relative to a normal distribution. A 
normal distribution is defined by K=3.When K>3 the distribution produces more extreme outliers than a 
normal distribution. The vertical velocity kurtosis is therefore useful for studying turbulence 
intermittency. 
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Estimates of S and K are computed from the same 30-minute time series used in the variance calculation. 
However, in contrast to the variance calculation, the effects of noise are mitigated by first filtering out 
vertical velocity measurements corresponding to low SNR. Typically the SNR threshold is set to 0.008. 
The actual SNR threshold used in the calculation is saved in the VAP. The S and K fields therefore 
contain missing values in regions where the SNR is below the prescribed threshold. Additionally, users 
can impose further quality control by increasing the SNR threshold. 

3.3 Cloud Statistics 

The DLWSTATS algorithm also computes cloud-base height (CBH), cloud base vertical velocity, cloud 
frequency, and cloud-base updraft fraction over each 30-minute averaging period. The cloud frequency is 
the fraction of time that a cloud is detected at any altitude, and the cloud-base updraft fraction is the 
fraction of time that positive cloud-base vertical velocities are observed during a given averaging period. 

CBH estimates are obtained by locating the heights of sharp spikes in the 1-sec range-corrected SNR 
profiles, as illustrated in Figure 4. To minimize false detections, the CBH algorithm uses a method based 
on the first derivative of the range-corrected SNR. When a cloud is present in the profile, the first 
derivative shows a strong positive peak immediately below and a strong negative peak immediately above 
the cloud base. We require the magnitude of these peaks to exceed 0.1 km, and vertical separation 
between peaks to be between 2 and 15 range bins. If these conditions are met, then the algorithm locates 
the maximum in the range-corrected SNR between the two extrema in the first derivative. The height of 
this maximum then determines the CBH. This process is then repeated for all 1-second profiles acquired 
during a given 24-hour period. Additional checks are then applied to minimize false detections by 
rejecting temporally isolated CBH estimates. This is done by computing the absolute difference in CBH 
at a given time and CBH values immediately before and after in time. If both differences exceed 1 km, 
then that CBH value is rejected. Once the CBH values have been located, the cloud base vertical velocity 
is determined from the vertical velocity at the CBH. 

The DLWSTATS algorithm reports the median value, 25th and 75th percentiles of the 1-second CBH 
values and cloud base vertical velocities over a given 30-minute averaging interval. Also, for each 
averaging interval the algorithm reports the fraction of profiles in which a cloud is detected at any height 
(cloud frequency), and the fraction of profiles in which the cloud base vertical velocity is positive (cloud 
base updraft fraction). 
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Figure 4. Illustration of the cloud-base detection method used by the ARM Doppler lidars. The solid 

black curve is the range-corrected SNR, and the blue curve is the first derivative of the range-
corrected SNR. The CBH (solid red line) is located by finding the maximum value of the 
range-corrected SNR between the heights corresponding to the minimum and maximum of 
the derivative (red dashed lines). 

3.4 Additional Data Products 

In addition to those parameters derived from the Doppler lidar measurements, the DLWSTATS VAP also 
incorporates cloud-base height data from the Vaisala ceilometers, surface turbulence measurements from 
the eddy correlation system (ECOR), and precipitation rate measurements from the surface MET station. 
Cloud-base height data from the Vaisala ceilometers are obtained from the <site>ceil25k<facility>.b1 
datastream. As in the case of the Doppler lidar, the final reported cloud-base height for the ceilometer is 
given by the median value during the 30-minute averaging period, and the final reported cloud frequency 
is the fraction of profiles for which a cloud is detected at any height during the 30-minute averaging 
period. In addition to the median values, the VAP also reports the 25th and 75th percentile values in the 
ceilometer cloud-base heights.  

The DLWSTATS VAP also includes turbulence and surface meteorological measurements from the 
<site>30ecor<facility>.b1 and <site>met<facility>.b1 datastreams. The 30-min data from 
<site>30ecor<facility>.b1 are interpolated to the time grid of the DLWSTATS VAP. Measurements 
include the surface temperature, water vapor density, vertical velocity variance, skewness and kurtosis, 
turbulent kinetic energy, and kinematic sensible and latent heat flux. The 1-minute precipitation rate 
measurements from <site>met<facility>.b1 are averaged within each 30-minute averaging time interval. 
The mean, maximum, and minimum precipitation rate for each 30-minute averaging period are also 
included in the VAP. 
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4.0 Output Data 
The primary Doppler lidar-derived variables in the DLWSTATS VAP are listed in Table 5 

Table 5. Primary Doppler lidar-derived variables in the DLWSTATS VAP. 

Variable name Description Dimensions 
w_variance  Vertical velocity variance  Height and time 
w_skewness  Vertical velocity skewness  Height and time 
w_kurtosis  Vertical velocity kurtosis  Height and time 
w Median vertical velocity Height and time 
w_25 25th  percentile for w Height and time 
w_75 75th  percentile for w Height and time 
dl_cbh Median cloud-base height  Time 
dl_cbh_25 25th  percentile for dl_cbh Time 
dl_cbh_75 75th  percentile for dl_cbh Time 
cbw  Median cloud base vertical velocity Time 
cbw_25 25th  percentile for cbw Time 
cbw_75 75th  percentile for cbw Time 
dl_cloud_frequency  Fraction of 1-sec profiles in which a cloud is detected at any 

height 
Time 

cbw_up_fraction Fraction of 1-sec profiles in which a positive cloud base 
vertical velocity is detected 

Time 

noise Standard deviation of the random noise in the vertical velocity Height and time 

snr Signal-to-noise ratio Height and time 

snr_threshold Signal-to-noise ratio threshold used in skewness and kurtosis 
calculation 

scalar 

4.1 Other Output Data 

The DLWSTATS VAP also includes several variables that are derived from non-Doppler lidar 
datastreams. These include: ceil_cbh (Ceilometer cloud-base height), ceil_cloud_frequency (Fraction of 
time that a cloud is detected by the ceilometer during averaging period), ecor_temp (temperature from 
eddy correlation system), ecor_h2o (water vapor density from eddy correlation system), ecor_tke 
(turbulence kinetic energy from eddy correlation system), ecor_ustar (friction velocity from eddy 
correlation system), ecor_w_var (w variance from eddy correlation system), ecor_w_skew (w skewness 
from eddy correlation system), ecor_w_kurt (w kurtosis from eddy correlation system), ecor_wt (wt 
covariance from eddy correlation system), ecor_wq (wq covariance from eddy correlation system), 
smet_spr_mean (Mean surface precipitation rate from surface meteorological instrumentation [MET]).  

This ancillary information can be used to assess the quality of the lidar-derived vertical velocity statistics. 
For example, precipitation may bias the vertical velocity statistics. For this reason, the VAP includes 
measurements of precipitation rate from the surface MET station. Also, the surface measurements of 
vertical velocity variance, skewness, and kurtosis from the ECOR provide a valuable sanity check on the 
lidar results. 



RK Newsom et al., April 2019, DOE/SC-ARM-TR-149 

10 

5.0 Summary 
The Doppler lidar vertical velocity statistics (DLSTATS) VAP provides height- and time- resolved 
measurements of vertical velocity variance, skewness, kurtosis, cloud-base height, cloud-base vertical 
velocity, cloud-base updraft fraction, and cloud fraction. These statistics are computed from 1-second 
vertical staring data from the Doppler lidar. The temporal resolution of DLSTATS VAP output is 
30 minutes and the temporal sampling interval is 10 minutes; thus every third profile is independent. The 
height resolution of the output is equal to the height resolution of the raw Doppler lidar data, which is 
typically 30 minutes. The minimum height of the lidar-derived vertical velocity statistics is approximately 
100 m, and the maximum height varies based on the atmospheric conditions. Typically, under clear-sky 
conditions, and in a mid-latitude convective boundary layer, the maximum height will be roughly equal to 
the depth of the boundary layer (i.e., 1 to 3 km AGL). On the other hand, cloud-base statistics may be 
computed as high as 10 km AGL. 

The DLSTATS VAP includes the SNR and the standard deviation of the random noise (called “noise” in 
the VAP). These two fields are included to enable users to apply their own quality control. The variance 
field in particular should be filtered to remove estimates corresponding to high noise (noise > 1 ms-1) or 
low SNR (SNR < 0.008). The skewness and kurtosis fields already contain missing values in regions of 
low SNR; however, users can impose further quality control by applying a higher SNR threshold. The 
SNR threshold used in the skewness and kurtosis calculation is included in the VAP. 

The (DLSTATS) VAP also includes several variables that are derived from non-Doppler lidar 
datastreams. These data are useful for assessing the quality of the lidar-derived vertical velocity statistics. 
For example, surface measurements of vertical velocity variance, skewness, and kurtosis from the ECOR 
provide a valuable sanity check on the lidar results, and precipitation rate data from the surface MET 
station is useful for identifying periods when the lidar results may be biased by the precipitation. 
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6.0 Example Plots 

 
Figure 5. Height-time displays of (a) the log10 of the vertical velocity variance, (b) skewness (b) and 

(c) kurtosis computed from Doppler lidar data at the SGP site for 12 July 2018. The variance 
has been filtered to remove data corresponding to noise standard deviation greater than 1.0 
ms-1. Cloud-base height estimates are indicated by the black dashes. 
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Figure 6. DLWSTATS results for SGP on 12 July 2018 showing a) the log10 of the vertical velocity 

variance and cloud-base height (black dots); b) ECOR vertical velocity variance (black) and 
turbulence kinetic energy (red); c) ECOR temperature (black) and water vapor concentration 
(red); d) ECOR kinematic vertical heat flux (black) and vertical water vapor flux. 



RK Newsom et al., April 2019, DOE/SC-ARM-TR-149 

13 

 
Figure 7. DLWSTATS results for SGP on 12 July 2018. The top panel shows the Doppler lidar-derived 

cloud-base heights (black) and cloud frequencies (red). The bottom panel shows the Doppler 
lidar-derived cloud-base vertical velocity (black) and updraft fraction (red). 
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Figure 8. DLWSTATS results for SGP on 12 July 2018 showing a) log10 of the SNR, b) median 

vertical velocity with no QC. c) log10 of the vertical velocity noise, d) ) log10 of the vertical 
velocity variance with no QC. 
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