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Abstract. Phase Correlation (PC) is a well-known method
for estimating cloud motion vectors (CMV) from infrared
and visible spectrum images. Commonly phase shift is com-
puted in the small blocks of the images using the fast Fourier
transform. In this study, we investigate the performance and5

the stability of the block-wise PC method by changing the
block size, the frame interval, and combinations of red,
green, and blue (RGB) channels from the total sky imager
(TSI) at the United States Atmospheric Radiation Measure-
ment user facility’s Southern Great Plains site. We find that10

shorter frame intervals, followed by larger block sizes, are
responsible for stable estimates of the CMV as suggested by
the higher autocorrelations. The choice of RGB channels has
a limited effect on the quality of CMV, and the red and the
grayscale images are marginally more reliable than the other15

combinations during rapidly evolving low-level clouds. The
stability of CMV was tested at different image resolutions
with an implementation of the optimized algorithm on the
Sage cyberinfrastructure testbed. We find that doubling the
frame rate outperforms quadrupling the image resolution in20

achieving CMV stability. The correlations of CMV with the
wind data are significant in the range of 0.38–0.59 with a
95% confidence interval, despite the uncertainties and lim-
itations of both datasets. A comparison of the PC method
with constructed data and the optical flow method suggests25

that the post-processing of the vector field has a significant
effect on the quality of the CMV. The raindrop-contaminated
images can be identified by the rotation of the TSI mirror in
the motion field. The results of this study are critical to opti-
mizing algorithms for edge-computing sensor systems.30

1 Introduction

Converting cloud images captured by a ground-based sky-
facing camera into a time series of motion vectors has impli-
cations for reporting local weather and short-term forecasting
of solar irradiance (Jiang et al., 2020; Radovan et al., 2021). 35

Phase Correlation (PC) estimates global translative shift be-
tween two similar images by detecting a peak in their cross-
correlation matrix which is used to estimate the cloud motion
vectors (CMV) from the satellite and ground-based sky cam-
era images (Leese et al., 1971; Dissawa et al., 2017, 2021; 40

Zhen et al., 2019; Huang et al., 2011). On the other hand,
optical flow (OF) estimates the pixel-wise motion assuming
the conservation of brightness of the object pixels in two
frames (Apke et al., 2022; Mondragón et al., 2020; Peng
et al., 2016). However, OF is sensitive to image noise and the 45

variation in lighting. Both OF and PC methods fail to detect
texture-less motion. Other object-based cloud tracking meth-
ods used in radar and satellite meteorology require cloud
identification before the tracking stage. The cloud identifica-
tion approaches vary from threshold-based to texture-based 50

methods and machine learning methods (Steiner et al., 1995;
Raut et al., 2008; Park et al., 2021).

The texture-based methods and the machine learning mod-
els add computational overhead complicating their use in
real-time applications. In infrared and microwave satellite 55

images, and radar images, the threshold of brightness temper-
atures and reflectivity, mark a physical distinction of the fea-
tures in the scene. However, for the cloud images in the visi-
ble spectrum, thresholds of RGB values may not be a mean-
ingful criterion to distinguish the properties of the clouds be- 60

cause they are affected by the lighting conditions and time
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of the day. The texture-based techniques are also susceptible
to detection errors due to reflections and shadows caused by
solar zenith angles. While the optical flow (OF) method es-
timates dense motion field (Horn and Schunck, 1981; Chow
et al., 2015), it also suffers from the limitations in visible5

camera images and may require segmentation or background
subtraction before the images are processed (Denman et al.,
2009; Wood-Bradley et al., 2012; El Jaouhari et al., 2015).

The Sage Project is designing and building a new kind
of reusable cyberinfrastructure composed of geographically10

distributed sensor systems (Sage Waggle nodes shown in Fig-
ure 1a) that include cameras, microphones, and weather and
air quality sensors generating large volumes of data that are
efficiently analyzed by an embedded computer connected di-
rectly to the sensor at the network edge (Beckman et al.,15

2016, https://sagecontinuum.org/). An edge device rapidly
analyzes the data in real-time at the location where it is col-
lected, and continuously sends and receives feedback from
connected remote computing systems and other similar de-
vices. In such networks including Sage, the computational20

efficiency of the algorithm is critical. The PC method can be
implemented without preprocessing images and is robust to
noise and changes in illumination as it works by only cor-
relating the phase information (Chalasinska-Macukow et al.,
1993; Turon et al., 1997). This eliminates the burden of sep-25

arating the background from the objects to be tracked. A
straightforward implementation of the PC method in the fre-
quency domain using the fast Fourier transform (FFT) is
computationally efficient, and hence a natural choice to de-
tect the cloud motion vectors from the hemispheric camera30

images at the edge.
The PC method is efficient for uniform rigid body motion,

i.e. when an object’s shape and size are preserved, and mul-
tiple objects in the scene are moving with the same veloc-
ity. There are a few limitations to the PC method that affect35

its applicability in tracking cloud motions in a sky-facing
camera. First, the PC method is less efficient when multi-
ple peaks in the correlation matrix are observed. This occurs
when cloud features are moving with different velocities as
each peak is associated with the motion of one or more inde-40

pendent features in the images. This limitation is overcome
by dividing the image into sufficiently smaller subregions
or blocks and employing the PC separately for each block
(Leese et al., 1971). As the multi-layer clouds with different
cloud base heights move independently, Peng et al. (2016)45

used adaptive blocks for each cloud type.
Second, the changing cloud texture and geometries may

cause incoherent motion vectors in some image blocks.
Therefore, additional quality control measures are applied to
remove the spurious CMVs, usually assuming that a spuri-50

ous CMV substantially deviates from its surrounding CMVs
in the presumably smooth velocity field (Westerweel and
Scarano, 2005). For the assumption of the coherent veloc-
ity field, smaller block sizes are preferred. The optimal block

size is determined by the maximum expected displacement 55

during the frame interval.
Third, the ground-based cameras frequently encounter

contamination on the mirror dome or hemispherical lens,
obscuring the clouds during and after a precipitation event
and automated identification and removal of precipitation- 60

contaminated images are critical (Heinle et al., 2010;
Kazantzidis et al., 2012; Gacal et al., 2018; Voronych et al.,
2019). The distortion of images caused by the presence of
raindrops and the edge detection methods are used to identify
raindrop contamination (Kazantzidis et al., 2012; Voronych 65

et al., 2019). In this paper, we propose the use of motion vec-
tors for detecting raindrop contamination on the rotating TSI
mirror.

Finally, while it is common for cameras to produce high-
resolution three-channel images, the PC method utilized only 70

a single channel. Hence, either the grayscale image or one of
the RGB channels is used. The dependence of CMV stability
on the choice of image channels is undocumented.

Investigating the sensitivity of the motion vectors to the
block sizes, the frame frequency, and its response to differ- 75

ent spectral channels will help in the effective implementa-
tion of the method. Therefore, in this paper, we evaluate the
performance of the block-wise PC with three visible chan-
nels, the grayscale, and the red to the blue ratio in two block
sizes and two frame rates. We also demonstrate the effect of 80

change in the image resolution and the change in frame rate
on the CMV quality. We also validated the PC method with
constructed data and compared it with OF method. The wind
and ceilometer measurements are used for additional valida-
tion to show consistency with independent atmospheric mea- 85

surements. However, wind retrieval is not an objective of the
paper. The data, methodology, and algorithm are described in
section 2. The results are shown in section 3, and their impli-
cations for the Sage edge-computing platform are discussed
in section 4. 90

2 Data and Methods

2.1 Data

In this paper, we mainly used data from the Atmospheric Ra-
diation Measurement (ARM) user facility’s Southern Great
Plains (SGP) atmospheric observatory (36.7◦N, 97.5◦W), in 95

particular, at the supplemental S1 and central C1 facilities in
Lamont, OK, due to long-term data availability from colo-
cated instruments for wind and cloud base height measure-
ments. The Sage camera images are used in section 3.3.2.

2.1.1 Total Sky Imager 100

The Total Sky Imager (TSI) is a mounted full-color digital
camera looking downward toward a rotating hemispherical
mirror (Figure 1b). Daytime full-color hemispheric sky im-
ages are obtained from TSIs operational at the ARM SGP
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Figure 1. a) Sage node deployment at the ARM user facility
in Lamont, OK., with a fisheye camera for sky monitoring. b)
Downward-looking Total Sky Imager with rotating mirror sunband
and setup.

atmospheric observatory (Morris, 2005; Slater et al., 2001).
The images recorded over the S1 site every 30 seconds (Mor-
ris, 2000) during the day on July 26, 2016, are used to
demonstrate the sensitivity of the method described later on.
The central sky region of 400 × 400 pixels is used to com-5

pute the CMV during the 06:36 to 20:35 CDT window. The
data over the C1 site between October 14, 2017, and August
14, 2019, are used for comparison of CMVs with the wind
data.

2.1.2 Sage Camera10

Hanwha Techwin America’s fish-eye camera (XNF-8010RV
X series), hosted atop a Sage node and pointed toward the sky
at the Argonne Testbed for Multiscale Observational Studies
(ATMOS) (41.70◦N, 87.99◦W), has a 6 MP CMOS sensor
providing 2048×2048 pixels full-color images. Unlike the15

TSI camera, the Sage fish-eye camera lacks a sunband and a
rotating mirror (Figure 1). Images recorded from this camera
every 30 seconds from 06:00 to 17:00 CDT on February 13
and 14, 2022, are used to demonstrate the effect of camera
resolution and frame rate on the sensitivity of the method.20

2.1.3 Wind Profiling Radar and Ceilometer

To validate the estimates of the CMV in our work, cloud base
height (CBH) and wind measurements are obtained from the
co-located ceilometer and the wind profiling radar (WPR),
respectively (Muradyan and Coulter, 1998; Morris et al.,25

1996). The ceilometer is an autonomous, ground-based ac-
tive remote sensing instrument, that transmits near-infrared
pulses of light and detects multi-layer clouds from the signal
backscattered from cloud droplets that reflect a portion of
the energy back toward the ground. (Morris, 2016). The laser30

ceilometer measurements extend up to 7.7 km with 10 m ver-
tical resolution. The wind profiles for comparison were ob-
tained from the 915 MHz WPR, which transmits electromag-
netic pulses in vertical and multiple tilted directions (3-beam
configuration is used at SGP) to measure the Doppler shift 35

of the returned signal due to atmospheric turbulence from
all heights (Muradyan and Coulter, 2020). The consensus-
averaged winds are estimated at an hourly interval and are
available from 0.36 km to about 4 km at 60 m vertical reso-
lution. We used the CBH and wind estimates over the SGP 40

C1 site from October 14, 2017, to August 14, 2019.

2.2 Phase Correlation using FFT

The phase correlation method for estimating motion in the
images is based on a property of the Fourier transform that a
translational shift in two images produces a linear phase dif- 45

ference in the frequency domain of the Fourier transform of
the images (Leese et al., 1971). In other words, a signal f2
that is related to signal f1 by a translation vector (dx,dy),
then their Fourier transforms denoted by F1 and F2 have
equal magnitudes but with a phase shift of related to the nor- 50

malized cross power spectrum as follows.

e−i2π(µdx+νdy) =
F1(µ,ν)F ∗

2 (µ,ν)

|F1(µ,ν)F2(µ,ν)|
(1)

where F ∗
2 is the complex conjugate of F2. The phase shift

term e−i2π(µdx+νdy) is the Fourier transform of the shifted
Dirac delta function. Hence, we can calculate dx and dy 55

by computing the inverse Fourier transform of the cross-
power spectrum and finding the location of the peak (Leese
et al., 1971; Tong et al., 2019). Therefore, PC in small image
blocks, between the subsequent images, is rapidly computed
using FFT. Because the phase correlation is executed only for 60

a small image block, it is possible to employ parallel compu-
tation to further speed up the estimation of motion for a large
dataset.

The following procedure describes the steps in implement-
ing PC to estimate the shift in images I1(x,y) at time t1 and 65

I2(x,y) at time t2. Let image I2 be spatially translated by
d= (dx,dy) with respect to the image I1,

1. Obtain FFT of the images I1(x,y) and I2(x,y) as
I1(µ,ν) and I2(µ,ν).

2. Compute C(µ,ν) by multiplying the FFT of the first 70

image and the complex conjugate of the second image.
C(µ,ν) is the cross-covariance matrix in Fourier space.

3. Obtain an inverse FFT of C(µ,ν)/|C(µ,ν)|. The real
part of the outcome gives a covariance matrix Cov(p,q)
in image space. 75

The above implementation of the PC algorithm is available
in several programming languages, notably C++, Python,
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and R in packages openCV (mulSpectrums), SkImage
(phase_cross_correlation), and imagefx (pcorr3d). For this
study, we used a custom Python implementation same as Pi-
cel et al. (2018); Raut et al. (2021). (See code availability
section).5

If image I2 is a spatially translated version of the image
I1, then the phase covariance matrix Cov(p,q) is zero every-
where except for a sharp peak at the location corresponding
to the displacement between the two images. The peak inten-
sity is a good measure of the quality of the motion vector.10

Due to the reasons mentioned in Section 1, the actual peak in
the covariance matrix can be fuzzy and it corresponds to the
best-fitting translational motion in the images. Sharp single-
pixel peaks can sometimes occur in the covariance matrix,
due to the high-frequency noise and artifacts in the images,15

which are flattened using Gaussian smoothing on Cov(p,q)
with σ = 3. An example of the procedure is given in Raut
et al. (2021).

For each image block, the peak covariance location is as-
signed as the local motion vector in image I2 with reference20

image I1. As per the meteorological convention for winds,
the U component is positive for an eastward flow, and the V
component is positive for a northward flow. The location of
the peak covariance from the center of the matrix gives the
shift in the image features during the image interval along the25

X, and Y dimensions of the image. We saved X and Y shifts
and computed the motion vectors per minute. The image top
is oriented towards the north and therefore in the subsequent
sections, the motion in the X and Y directions are referred to
as U and V components, respectively.30

2.3 Constructed Data for Validation

For studying the accuracy and quantitative error analysis of
the method, a dataset with the known displacement vectors
is needed. Synthetic or reconstructed image sequences are
best suited for this task as managing the displacement is triv-35

ial in such a dataset compared to the real dataset. However,
the constructed dataset should be made with care to avoid
unreal augmentations and artifacts while incorporating pos-
sible variations of the features from image to image. Such
a dataset, although possibly not a perfect representation of40

the real data, can be used to study the properties of the algo-
rithms.

These images can then be translated by the desired amount
to achieve the cloud motion effect. We created image pairs by
reconstructing the 2060 samples of Sage camera images clas-45

sified as cloudy by the algorithm described in Dematties et al.
(2022) in their cluster 3 and 8. The images were selected to
have cloudiness in the central 200 × 200-pixel region. The
pair of images were created and then subjected to the fol-
lowing modifications using an edge filter A and a flat filter50

B.

Kernel A=

 0 −1 0
−1 5 −1
0 −1 0

 (2)

Kernel B =

1 1 1
1 1 1
1 1 1

 (3)

The first image was created with the following operations.

1. The original image was converted to grayscale. 55

2. Addition of Gaussian noise with mean zero and standard
deviation 1.

3. Convolution with Kernel A.

4. Two iterations of Erosion followed by Dilation by the
Kernel B. i.e., Morphological opening of the image. 60

5. Cropped images to achieve the desired displacement.

The second image of the pair was created by modifying a
few operations.

1. Reversed the RGB colors in the original image before
converting it to grayscale. This reversing of operations 65

also known as color augmentation creates a spectrally
different image with the same structure.

2. Addition of Gaussian noise with mean zero and standard
deviation 1.

3. Convolution with Kernel A. 70

4. One iteration of morphological opening by Kernel B.

5. Translated and cropped images for the desired displace-
ment.

We translated the images by 5, 10, and 20 pixels in both X
and Y directions for ease of comparison and interpretation of 75

the results (see section 3.1).

2.4 Outliers in the CMV Field

When the image block belongs to the clear sky or the scene
has changed beyond recognition by the correlation, the peak
in the covariance matrix is usually near the boundaries of 80

the block, thus giving artificially large displacements. Such
vectors are easily identified using a maximum velocity limit
Vmax. For this analysis, we used Vmax = block length

3 . If the
Vmax is smaller than the expected maximum speed, then a
larger block size is recommended. 85

Removing large magnitude vectors smooths the field, how-
ever some motion vectors of reasonable magnitude but spuri-
ous directions remain. Such spurious vectors can be removed
by comparing them with the surrounding motion vectors.
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We compared each vector with the normalized me-
dian fluctuation of the neighboring blocks (Westerweel and
Scarano, 2005). Consider a 3×3 data with u0 as the dis-
placement vector at the center block, u1,u2, ...,u8, as dis-
placement vectors of the neighbors, and um as the median of5

neighbors, not including the central vector. Then the residual
(ri) of all neighbours are computed as ri = |ui −um| to ob-
tain the median residual (rm). The normalized median fluc-
tuation r0 is given by

r0 =
|u0 −um|
rm + ϵ

(4)10

ϵ is the minimum normalization level that represents the ac-
ceptable fluctuation, usually 0.1–0.2. The CMV vectors with
normalized median fluctuation values over 6 are discarded as
outliers.

2.5 Identification of Raindrop Contamination15

The CMV is not valid when rainwater present on the reflect-
ing mirror obscures the clouds. However, in such a scenario,
the rotation of the raindrop-contaminated mirror produces
a rotating vector field as shown in Fig. 2a. We correlated
the estimated CMV fields with the mean of manually iden-20

tified contaminated CMV fields and found that the correla-
tion coefficient, r > 0.4 is associated with the rotation of the
raindrop-contaminated mirror (Fig. 2b). Because of the sharp
edges of the raindrops, the rotational pattern is efficiently
captured with few raindrops contaminating the mirror. How-25

ever, it struggles to detect contamination when the drops are
concentrated at the center of the dome. Therefore, after the
rotation is detected, the next 10 minutes of data are flagged
as contaminated even if no subsequent rotation is detected.

2.6 Setup for Sensitivity Analysis30

To test the algorithm’s sensitivity to the block size, we di-
vided the 400 × 400-pixel sky area into a grid of 10 × 10
and 20 × 20 blocks and referred to as block length 40 and 20
pixels, respectively in Figures 5–8. Note that the choices for
the number or size of blocks are restricted by the Vmax on35

one end and the neighborhood criteria on the other. For ex-
ample, if the expected Vmax is 7 pixels/min then the blocks
should be at least 21 pixels wide (section 2.4). On the other
hand, for the 10 × 10 grid (block width 40 pixels) with a
one-pixel neighborhood, the correction applies to the cen-40

tral region of 8 × 8 blocks only. Therefore, increasing block
sizes reduces the number of blocks in the sky region, which
reduces the scope of the neighborhood method in the error
correction stage. To test the sensitivity to the frame interval,
CMVs are also computed at 30 and 60-second intervals. The45

30-second CMVs are accumulated over one minute for com-
parison. As the PC uses monochromatic images, the CMVs
were computed separately for the three BGR channels (ab-

Table 1. Mean, standard deviation (SD), root mean square error
(RMSE), and root mean square percent error (RMSPE) of cloud
motion estimated from reconstructed images for constant displace-
ments of 5, 10, and 20 pixels. (u=uncorrected, c=corrected with a
threshold.)

Displacement [pix] Mean SD RMSE RMSPE %

5 (u) 5.5 1.02 1.13 22.6
10 (u) 8.2 2.63 3.19 31.9
20 (u) 15.4 8.7 9.83 49.1
10 (c) 9.2 1.4 1.7 11.4
20 (c) 20.5 2.1 2.1 4.4

breviated to Bu, Gn, Rd in Figures), the red to the blue ratio
(RB, Slater et al., 2001), and grayscale (Gy) images. 50

2.7 Optical Flow Algorithm for Comparison

Let I(x,y, t) be the first image defining the pixel intensities
at the time t. Therefore, the first and second images are re-
lated as

I(x,y, t) = I(x+ δx,y+ δy, t+ δt) (5) 55

In the computation of OF, we assume that the intensities of
the pixels, that belong to the exact object, change only due to
the displacement (Horn and Schunck, 1981). This assump-
tion allows for all changes detected in the x and y directions
of the image are to be associated with the motion only. The 60

first-order approximation of the Taylor polynomial is

∂I

∂x
u+

∂I

∂y
v+

∂I

∂t
= 0 (6)

where u= dx
dt , v = dy

dt . However, to find the dense mo-
tion vector field, we used Farnebäck (2003) method from
OpenCV which approximates the neighborhood of both 65

frames by higher order (quadratic) polynomials, I(x)∼
xTAx+bTx+c. This algorithm works with an image pyramid
with a lower resolution at each next level to track the features
at multiple resolutions. Faster motions are captured with the
increased levels of the pyramid. The algorithm provides a 70

motion vector for each pixel of the input image. The mo-
tion field can be smooth or detailed depending on the given
neighborhood size and the standard deviation used for the
polynomial expansion.

3 Results 75

3.1 Validation with Constructed Images

To show the validation of our implementation of the PC
method, we used the images reconstructed from the Sage
camera data as described in section 2.3. Finally, 2060 pairs
of cloudy images translated by 5, 10, and 20 pixels, in both 80
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Figure 2. a) An example of the circular motion field generated every 2-4 minutes by the rotation of the raindrop-contaminated mirror of
TSI. b) Histogram of the correlation coefficient between the mean rotational vector field and CMV fields on January 2, 2017, shows a robust
separation of raindrop-contaminated frames from the clean frames.
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Figure 3. Distribution of the motion estimated by the PC method in reconstructed images for displacement values 5, 10, and 20 pixels.

X and Y directions, were used to estimate the displacement
using the PC method described in the section 2.2. The dis-
tributions of the estimated motion are shown in Figure 3 and
their comparison statistics are shown in Table 1. For smaller
displacement of 5 pixels, the algorithm estimates the values5

with 22.6% root mean square percent error. With the increas-
ing displacement of 10 and 20 pixels, the RMSPE increases
to approximately 32 and 49 %, respectively. This is consis-
tent with the increasing spread in the estimates with increas-
ing displacement as seen in Figure 3. However, the algorithm10

tends to produce a peak near the zero value, except for very
small displacements (D=5), and another peak at the given
displacement. These results are consistent with Zhen et al.
(2019). The proportion of vectors near zero value increase

with the displacement however, in most cases they are esti- 15

mating the correct quadrant of the direction of the motion.
However, these values need to be removed to get a good es-
timation of the speed of the motion. For demonstration pur-
poses, we used the threshold to remove the near-zero values
which significantly reduced the RMSE. However, in the real 20

images, the method described in the section 2.4 is effective
when the majority of the vectors are correct. For D=20, ap-
proximately a quarter of the vectors were near zero vectors.

3.2 Cloud Motion and Sensitivity Results

Changing sky conditions captured by TSI on July 26, 2016, 25

during the 06:36 to 20:35 CDT are shown in Fig. 4 at 100
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Figure 4. Varying sky conditions on 26 July 2016, from 06:36 to
20:35 CDT (11:36-01:35 the next day in UTC) at 100 minutes in-
tervals over Lamont, OK. A Sky area of 400x400 pixels is cropped
and used for CMV computation. The top of the image point to the
north and the red arrow shows the direction of motion for that frame.

minutes intervals for reference. The sequence of images
shows the movement of stratiform clouds from the southwest
for over two hours (∼ 150 min), with the occasional presence
of low-level cumulus clouds. After about 3 hours, the cumu-
lus cloud development covered the sky (see the 200-minute5

snapshot) moving predominantly from the east/northeast, as
shown by the red arrow. Rapidly moving low-level clouds
had less coherent motion at the block level than the altostra-
tus. In addition, the low-level clouds intermittently traveled
in patches with the altostratus aloft moving from the south-10

west. The time series of U and V components of CMV, shown
in Fig. 5 and Fig. 6, respectively, are smoothed using cubic
splines for easily discernible visualizations. The raw U com-
ponent is shown in Fig. 12 for reference. The U and V plots
suggest that the PC method successfully captured the direc-15

tion of the motion and the reversal of the direction in all con-
figurations. As described above, the mid-level clouds moving
from the west and transition to low-level clouds moving from
the east at around 150 minutes are seen in Fig. 5.

The turbulent motion characterized the episodes of cumu-20

lus growth from 150 to 450 minutes, as evidenced by the
fluctuations in the CMV during this phase in all channels,
however, more pronounced in the RB channel. Between 500
and 600 minutes, cumulus and altostratus cleared, and high-
level cirrus clouds became visible, flowing from the west.25

Additional late-afternoon cumulus movement (see the 700

min snapshot) and the clear sky with high-level cirrus or
occasional westward-moving low-level cloud patches were
present until sunset.

The frequency distribution of the CMV components (Fig. 30

7) also shows two peaks of positive eastward component (U)
distinguishing the rapidly moving mid-level and slow high-
level clouds from the camera viewpoint. The larger blocks
(40 pixels wide) and the shorter frame interval (30-sec) have
a wider range than the rest of the configuration, which shows 35

their efficiency at capturing the low-level cumulus motion.
It is important to note that July 26, 2016, was accompanied
by a variety of cloud conditions and individual episodes of
low, medium, and high-level cloud motion, each lasting for
at least an hour. Thus, the short-term fluctuations of CMV 40

are mainly caused by the algorithm’s instability. To assess the
stability of CMVs for various configurations, we compare the
autocorrelation of the CMV in the following subsection.

3.3 Stability of CMV

The stability of the CMV was tested by changing the block 45

size, the frame interval, and combinations of red, green, and
blue (RGB) channels from the total sky imager (TSI) and
by changing the image resolution and frame rate in the Sage
camera.

3.3.1 Block Size, Frame Interval and Channel 50

The movement of clouds is usually smooth at the one-minute
time interval. Except for the change in direction during the
altostratus to cumulus transition, the movement of the clouds
on July 26, 2016, should be more or less stable at the hourly
intervals for most of the day (Fig. 5 and 6). However, the 55

CMV fluctuates at a 1-minute time interval, mainly due to
the irregular response of the algorithm caused by the issues
mentioned in Section 1. Therefore, the stability of motion
vectors in time is evaluated for the above configurations by
checking the autocorrelation of the CMV time series. The au- 60

tocorrelation function (ACF) of U and V components for dif-
ferent configurations is shown in Fig. 8 (top panels). The lin-
ear ACF suggests a long decorrelation length for all the com-
binations. While RB has the lowest autocorrelations (more
fluctuating vectors) for all configurations, the rest of the color 65

channels have more or less equally stable vectors. The frame
interval, followed by block length, noticeably affects the sta-
bility of the vectors.

The lower panels in Fig. 8 are the same as the top pan-
els but for the period between 150:450 minutes when the 70

rapidly developing low-level clouds were present. The small
cloud features were developing fast and had variable motion.
Therefore, during this period, the autocorrelation is lower
and the performance of the large block sizes and short frame
intervals is noticeably better for both U and V components. 75

The CMV from red and gray channels has slightly higher au-
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Figure 5. Smoothed time series of U component of domain averaged CMV [pixel ·min−1] on 26 July 2016, 06:36 to 20:35 CDT (11:36-
01:35 next day in UTC) over Lamont, OK. Variations with block size (20 pixels and 40 pixels) and frame intervals (30 sec and 60 sec) are
shown for 5 channels.

tocorrelation for the dominant motion (i.e. zonal component,
U) during this period.

3.3.2 Image Resolution and Frame Interval

Our analysis shows that CMVs are more stable for larger
blocks and shorter frame intervals (see Sec. 3.3.1). There-5

fore, the stability of motion vectors is evaluated for the same
blocks (i.e., the image divided into 10×10 grid.) and by re-
ducing their resolution in steps to block lengths of 200, 150,
100, and 50 pixels, as shown in Fig. 9, with frame intervals
of 30 and 60 seconds. February 13 was dominated by mid-10

level stratus cloud motion and February 14 had periods of
low-level cumuliform development with fast movements and
rapid evolution of cloud features dominating the scene. In
addition, on both days, the cloud motion was mostly in East-
West (zonal) direction with the U component approximately15

four times larger than the V component. Therefore, ACF of
only U components for four image resolutions and two frame
intervals are shown in Fig. 10. ACF is significantly lower for
longer frame intervals. For example, long intervals reduce the
autocorrelation at lag-1 from 0.75 at 30-sec intervals to 0.5 at20

60-sec intervals (Fig. 10 a ). This effect is even more promi-

nent for the rapidly evolving cumuliform clouds (Fig. 10 b )
where the autocorrelation at the lag-1 drops from 0.65 to 0.2.
On the other hand, a change in the resolution by a factor of
four has minimal effect, and a change in lag-1 autocorrela- 25

tion is within 0.05.

3.4 Comparison with Wind Data

To compare the hourly mean CMV with winds of appropri-
ate altitudes, we identified the hours with a stable CBH for
at least 20 minutes from the ceilometer measurements from 30

October 14, 2017, to August 14, 2019. The hourly winds are
averaged for 1 km deep layers from the surface to 4 km alti-
tude, and then the hourly-mean CMVs are compared with
the mean wind vectors in the vertical layer corresponding
to the median CBH (Fig. 11). Note that the range of values 35

for CMV and wind have an order of magnitude difference
due to the different units. From the 551 days of data during
this period, 876 daytime cloudy hours were identified, when
simultaneous measurements from the WPR, the ceilometer,
and CMV estimates were available. We only present CMVs 40

for one setting: the 40-pixel block length, and the 30-second
frame interval for the red channel. The rainy samples, iden-
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Figure 6. Same as Figure 5 but for V component of the CMV.
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Figure 8. Autocorrelogram for U and V components showing the stability of the motion vectors shown in Figure 5 and Figure 6. (top) for all
the data, and (bottom) for the selected period of rapid Cu cloud development between 09:06 to 14:56 LT (time steps: 150–500 in ).

tified using the method described in section 2.5 mostly fall
close to zero value, as no mean motion is recorded. The sky-
view camera data routinely suffers from rain, snow, and other
debris on the lens that obstructs the view. The higher wind
speeds near zero CMV can mainly occur due to the snow5

obstructing the view, or smooth flat cloud bases that are not
successfully tracked. In addition, the quality of the wind pro-
files from the WPR is also adversely affected by rainfall (Mu-
radyan and Coulter, 2020). Therefore, we removed instances
with precipitating events from consideration in our compar-10

ison. The correlation coefficient (r) of the U component of
the CMV and hourly wind averages improved from 0.38 for
all the data, to 0.42 after removing rainy samples, with a 95
% confidence interval. Likewise, for the V component, r in-
creased from 0.56 for all data to 0.59, with a 95 % confidence15

interval. The slope of the linear fit for U components is be-
tween 2.4–3.4 for layers 0–3 km and it is 5.7 for the 3–4 km
layer, suggesting that the mid-level (i.e. 3–4 km) CMVs are
noticeably underestimated from the camera viewpoint. The

slopes of the V components are in the range of 3–4 for all 20

layers. The WPR data above 4 km are sparse hence no sam-
ples with matching criteria were available during the study
period.

The comparison of the CMV either from a ground-based
camera or satellite sensors with that of atmospheric winds 25

has several sources of uncertainty. The estimation and com-
parison of CBH and winds from the ceilometer and the wind
profiler respectively, show sampling uncertainty. In addition,
the cloud displacement from the camera viewpoint differs
with altitude, and deeper convective clouds do not always 30

move parallel to the low-level winds. Therefore, this com-
parison may not be interpreted as a quantitative validation of
the algorithm for wind retrievals, however, significant corre-
lations of the magnitudes indicate that the estimates of the
instantaneous CMVs from the camera images are stable over 35

a long period. Although a perfect correlation does not ex-
ist between wind and CMV from ground camera images due
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Figure 9. The scheme for testing resolution sensitivity with Sage
camera image obtained on April 21, 14:06:38 over Lamont, OK. A
10×10 block grid with four successively lower resolutions is used
for CMV computation to compare the effect of resolution and time
interval on the stability of CMV.

to the above factors, more accurate identification of rain and
snow-contaminated images would improve the comparison.

3.5 Comparison with Optical Flow Method

The estimations of the mean motion vector from PC and the
OF algorithms for U components are shown in Figure 12.5

The issue of near-zero values seen in Figure 3 is also present
in OF vectors which is causing an underestimation of the
mean magnitude as compared to the PC (Figure 12, Opt-
FlowAll). Figure 13 shows smoothed dense CMV field using
OF method. The near-zero values occur at the clear sky re-10

gion or where the lighting and scene change drastically. Due
to the dense motion field, these vectors are clustered in image
space and therefore they can not be removed with the neigh-
borhood method of Westerweel and Scarano (2005). How-
ever, the regions with cloudiness are efficiently tracked by15

the OF method. After removing near-zero magnitudes using
an arbitrary threshold of 1, the OF has higher magnitudes as
compared to the PC method and better captures the variabil-
ity than the PC method. The dense field of motion vectors
can be leveraged for more adaptable statistical corrections20

than the arbitrary threshold used in this study for presenta-
tion purposes. The final CMV magnitudes could be highly
dependent on the post-processing of the results for both PC
and OF methods. Although the mean magnitudes are sensi-
tive to post-processing corrections, the change in direction25

and magnitude of the motion vectors from both methods are
comparable. The correlation between the OF and PC meth-
ods increases from 0.84 to 0.9 after removing the near-zero
values. The autocorrelation functions in Figure 12b show that
the minute-by-minute fluctuations of the CMV are more sta- 30

ble for OF than for PC, due to the dense vector field of OF.

4 Discussion of the Results

Prior studies have documented the effectiveness of the block-
wise PC and OF method for detecting cloud motion in IR
and visible spectrum images (Leese et al., 1971; Chow et al., 35

2015; Dissawa et al., 2017; Zhen et al., 2019). We tested
the sensitivity of the PC method to changes in block length,
frame interval, and image resolution, as well as five combi-
nations of the visible channels from a sky-viewing camera.
These results are also applicable to satellite and radar-based 40

motion estimation. Additionally, we compared the derived
mean CMV from the PC method with the observed mean
wind field from a collocated remote sensing instrument, and
OF method. We also presented a method to detect raindrops
on the rotating dome. However, the automated removal of 45

contaminated images due to rain, snow, and other obscuri-
ties needs a more complex approach using advanced machine
learning algorithms and labeled data.

The performance of different visible channels is compara-
ble except for the red-to-blue channel ratio (RB). Although 50

the RB is effective in segmenting clouds from the blue sky
background (Dev et al., 2016), it smooths the cloud texture
during overcast conditions, reducing the performance of the
PC method. The red and grayscale performed slightly better
than the blue and green channels. We find that larger block 55

sizes provide a more stable estimation of cloud motion, and
the stability benefits largely from the shortened interval be-
tween frames even for coarse-resolution camera data. Con-
sidering that the temporal changes in cloud patterns reduce
the quality of the motion vectors, a shorter frame interval 60

helps in maintaining the structure from one image to the next.
However, a larger block size allows for a larger sample for
stable correlation matching, achieving more stable estimates
of the motion during disorganized cloud conditions (Fig. 8 c
and d). Although averaging in time over the short frame in- 65

terval is a better way to achieve reliable estimates, a higher
sampling rate may not be always feasible. In these situations,
the large block size that can capture homogeneous motion is
recommended for block-based PC implementation. We also
show that increasing the spatial resolution, i.e. increasing the 70

number of pixels without decreasing the number of blocks,
marginally affects the quality of the motion vectors. At the
same time, reducing the frame interval from 60 sec to 30 sec
outperforms quadrupling the resolution. Comparable results
were obtained by Wang et al. (2018) for cloud segmentation 75

using a ground-based camera.
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Our analysis shows that doubling the frame rate outper-
forms quadrupling the resolution for PC. This non-intuitive
result is very interesting in the context of edge computing.
Because a shorter frame interval between the camera images
effectively improves the quality of the CMVs, the applica-5

tion must have deterministic and low-latency access to sky

images. Edge computing solves this problem efficiently by
carefully placing and pairing computation with sensor data
sources. Without incurring large data transfers and delays
due to network outages, in an edge-computing platform like 10

Sage, image data can be acquired and processed right next
to the camera, in the field. The high-level motion estimation
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1

Figure 13. Two examples of dense cloud motion field using OF method, thinned by the factor of 20, show clustering of vectors in image
space. Mean cloud motion in Figure 12a is underestimated due to the near-zero values.

result which is much smaller and compresses efficiently can
be communicated and archived for further studies.

The validation with constructed data and the comparison
of PC and OF methods suggests that the quality of the motion
vectors is sensitive to the error corrections and removal of5

the near-zero magnitudes in the post-processing. The dense
OF field can be corrected using spatial clustering methods to
produce valuable results. It is also possible to use the inputs
from the cloud cover estimation plugin to correct the raw OF
field. The issue of multi-layer clouds mentioned in Section 110

can be addressed using OF dense motion field using adaptive
clustering as post-processing as opposed to adaptive blocks
used in Peng et al. (2016). Further sensitivity and compara-
tive studies with OF algorithm are needed to test this tech-
nique. 15

The distortion of the sky images near the horizon, due to
the wide FOV of the fisheye lens, affects the accuracy of the
mean cloud motion estimation. Therefore, the mean is esti-
mated using the center portion of the images. The fisheye
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de-warping method can correct the regions near the horizon,
where features are not heavily compressed.

5 Conclusion and Future Scope

Wind data retrieval from cloud motion vectors is an ac-
tive area of research in satellite meteorology. Neverthe-5

less, obtaining accurate wind retrievals from the ground-
based optical camera images requires estimates of cloud-base
heights, which is challenging without the Lidar-based meth-
ods. Moreover, despite assuming ideal CMV and cloud-base
height estimates, the resulting winds may not align well with10

the observed cloud motion due to the substantial vertical ex-
tent of cumulus clouds and the influence of vertical wind
shear on their motion. The growth and decay of clouds can
also result in additional cloud motion components unrelated
to the wind. Thermal infrared cameras can potentially help15

determine cloud-base heights and also cloud motion vectors
for estimating winds in the future.

Current machine learning algorithms for automatic cloud
identification underperform in the presence of thin clouds
(Park et al., 2021). To this end, we are generating a dataset of20

thin clouds identified by scanning Mini Micro Pulse LiDAR
(MiniMPL) and a co-located sky-viewing camera using an
edge-computing paradigm. One of the objectives is to use the
camera images to predict cloud boundaries and cloud motion
and utilize the knowledge to adapt MiniMPL scan strategies25

in real time for optimal sampling in various environmental
conditions. Thus, reducing the number of clear sky scans and
targeting required clouds for the increased density of scans.
Cloud locations predicted from CMV estimates can also be
used in forecasting solar irradiance in near real-time (Jiang30

et al., 2020; Radovan et al., 2021). The results of this study
are helping to optimize image sampling and cloud motion
estimation with edge-enabled camera systems.
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and the full source code is available on GitHub at
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