Modifications to the Water Vapor Continuum in the Microwave Suggested by Ground-based 150 GHz Observations

Dave Turner¹, Maria Cadeddu², Ulrich Löhnert³, Susanne Crewell³, Andy Vogelmann⁴

- 1 Space Science and Engineering Center, University of Wisconsin Madison
- 2 Argonne National Laboratory
- 3 Institute for Geophysics and Meteorology, University of Cologne
- 4 Brookhaven National Laboratory

Importance of Higher Microwave Frequencies: Improved LWP

Adding 90 GHz obs decreases random error in LWP retrievals by factor of 2 over 23/31 GHz retrievals

Large Differences Among RT Models

6 MONORTM simulations for 2 climatologies, only WV and O₂ considered, 2 overlapping pairs with similar water vapor amount

Rosen98 - MonoRTM

Liebe87 - MonoRTM

Liebe93 - MonoRTM

Two 90/150 GHz Radiometers

ARM MWRHF

University of Munich DPR

- Built by same manufacturer; similar "insides"
- Both calibrated with LN₂; 90 GHz also used tip curves
 - Dew on radome & clouds contaminated most tip curves
 - LN₂ calibration procedure was different for two instruments

Comparison of Two Systems at 150 GHz

- Independently calibrated systems
- 2122 clear sky cases from 24 different days
- Bias: -0.12 K
- RMS: 1.29 K
- Slope: 0.998 K/K
- Correlation: 0.998

(a) MonoRTM at 150 GHz 50 GHz T, Difference [K] (c) R98 at 150 GHz 150 GHz T_b Difference [K] (e) L87 at 150 GHz 150 GHz T, Difference [K] (g) L93 at 150 GHz GHz T_b Difference [K] 150 3.0 0.5 2.5 Precipitable Water Vapor [cm]

Turner

Absorption Model Evaluation at 150 GHz

- 71 clear-sky cases with coincident radiosonde and DPR or MWRHF obs
- Scaled radiosondes to match PWV retrieved from MWR's 23.8 GHz obs
 - Needed in order to remove diurnal sonde humidity bias
- Only able to compare with 150 GHz obs, as 90 GHz obs could not be calibrated
- Significant differences btwn obs and calc, especially for the MonoRTM and Liebe93 models

Water Vapor Continuum Formulation

$$\alpha_f = v \tanh \left(\frac{hv}{2k_BT}\right) \left(\frac{(n-n_v)}{n_0}\right) n_v C_f(v)$$

$$\alpha_s = v \tanh \left(\frac{hv}{2k_BT}\right) \left(\frac{n_v}{n_0}\right) n_v C_s(T, v)$$

MonoRTM formulation

Model	C_f multiplier	C _s multiplier
Rosen98	$1.105 \pm (0.098, 0.030)$	$0.79 \pm (0.17, 0.06)$
MonoRTM	$0.835 \pm (0.073, 0.018)$	$1.44 \pm (0.29, 0.09)$
Liebe87	$1.090 \pm (0.124, 0.038)$	$0.80 \pm (0.20, 0.07)$

Multipliers derived to make:

- abs (slope of residuals at 150 GHz vs. PWV) < 0.1 K/cm
- abs (bias of residuals at 150 GHz) < 0.1 K

Turner, Cadeddu, Löhnert, Crewell, Vogelmann Liebe93 treats WV cntnm as a pseudo-line...

Evaluation at 31.4 GHz

- Comparisons made with the 31.4 GHz MWR observation
- Used same 71 cases for evaluation
- MonoRTM and Liebe93 results show significant improvement due to WV cntnm update
- Rosen98 and Liebe87 models show small improvement with updated cntnm
- Updating Rosen98, Liebe87, and Liebe93 models to have better 22.2 GHz line parameters improved all three models

Spectral Impact of the Modification

Original model minus modified model

Turner, Cadeddu, Löhnert, Cre 2009 ARM Science Team Mee

Spectral Impact of Modification Relative to the MonoRTM

Original Model Results

Modified Model Results

Turner, Cadeddu, Löhnert, Crewell, Vogelmann 2009 ARM Science Team Meeting

Conclusions

- Evaluated microwave RT models using new observations at 150 GHz during AMF/COPS
- Results suggest WV continua need adjustment:
 - Decrease in foreign-broadened component
 - Increase in self-broadened component
 - Adjusted models in much better agreement with each other
- Better agreement with obs at 31.4 GHz
 - Possible bias in MWR obs is complication
 - Need to used improved 22.2 GHz line parameters
- Need more observations at larger PWV and other atmospheric temperatures
- Inability to reprocess 90 GHz data was disappointing, but vendor has worked with us to allow this to happen in the future
- Manuscript submitted to IEEE TGRS