

How Do the Variational Analysis and SCMs/CRMs Respond to a Reduced ARM SGP Network? Shaocheng Xie

Lawrence Livermore National Laboratory

Acknowledgments:

Xiaoqing Wu for ISU CRM tests

Steve Klein, Minghua Zhang, Ric Cederwall, and Ann Fridlind for suggestions and comments

2009 ARM Science Team Meeting, Louisville, Kentucky

A Little Background

Atmospheric Radiation Measurement

Current ARM SGP Observation Network

~3.5 x 3.5 degree

- ~ 23 ARM Extended Facilities (EFs)
 - Radiative fluxes
 - SH, LH

Variational **Analysis**

Domain

- Precipitation
- Other surface Meteorology fields (e.g., Ts, Ps)
- ~14 EFs equipped with EBBR (Red)
- ~9 EFs equipped with ECOR (Blue)

CASA IP1 Radar Network

NOAA wind profilers

ARM wind profilers

Analysis grid points

- * Sounding stations
- + Oklahoma mesonet
- X Kansas mesonet
- **♦ ARM EF**

~4km WSR-88D Radar precipitation well covers the domain

Issues with Current SGP Network

- SGP Domain size (~3.5 x 3.5 deg) vs. a typical GCM grid box (~2.0 x 2.0 deg)
- Can't resolve well the mesoscale variability shown in many important meteorology fields
- Continuously maintaining the 23 EFs at their current locations is expensive

Ideas

- Shrink SGP to 2 x 2 (deg) or less
- Redistribute the EFs to the reduced SGP domain

→ Have a better chance to get 3d clouds for a smaller domain

How do the variational analysis and SCMs/CRMs respond to a reduced SGP domain?

Two Revised Surface Networks Used in the Study

Atmospheric Radiation Measurement

Option A:

Shrink SGP to ~ 2 x 2 deg, centered at CF

Analysis Domain A

Option B:

Shrink SGP to $\sim 1.5 \times 1.5 \text{ deg}$, domain enclosed by the 6 closest EFs, the CF not at the center

Analysis Domain B

Pros:

- 2 x 2 or 1.5x1.5 (deg) ~ A typical climate model resolution
- 6 EFs +CF within the new domain
- More evenly distributed surface mesonet stations

Cons:

- CASA radars and both ARM and NOAA wind profilers are outside the reduced domains
- Eliminate most ECOR stations (except for CF)

Mean Surface Precip Rates Over CLASIC IOP

ARM

Atmospheric Radiation Measurement

Smaller domain shows stronger surface precipitation

CNTL: Original domain

A: Domain A

B: Domain B

Mean Heat Fluxes

 The differences are mainly due to the elimination of the ECOR stations (see next slide for more information)

CNTL: Original domain

A: Domain A

EBBR vs. ECOR

Atmospheric Radiation Measurement

 ECOR has larger SH and smaller LH than EBBR

Mean Surface Radiation

Atmospheric Radiation Measurement

 Minor impact on surface radiation fluxes

CNTL: Original domain

A: Domain A

Variational Analysis

Three runs over the ARM CLASIC IOP:

CNTL: original domain

A: domain A (2x2 degree)

B: domain B (1.5x1.5 degree)

- Upper air data from RUC analyses
- Surface and TOA constraints are averaged over corresponding domains

Derived Large-Scale Forcing Field

Atmospheric Radiation Measurement

- Analysis is stable
- Forcing strength just responds to the new surface and TOA constraints, especially surface precipitation

Vertical Omega Profiles Averaged over wet and dry periods

- Stronger forcing with stronger Pr
- The level of maximum omega is lower for smaller domain

Averaged surface precipitation Rates (mm/day)

SCM/CRM Tests

- •NCAR CAM3 SCM (Shaocheng Xie)
- •ISU CRM (Xiaoqing Wu)

SCM responds well to the smaller scale forcings

Observed surface precipitation rates are well simulated by the NCAR SCM

0626

0630

Simulated Clouds

Atmospheric Radiation Measurement

Smaller domain helps capture better the temporal variability and low-middle level clouds observed at CF

Temperature Errors

Atmospheric Radiation Measurement

Overall, model errors are similar for the three domains

Temperature Errors

Atmospheric Radiation Measurement

Overall, model errors are similar for the three domains

Moisture Errors

Atmospheric Radiation Measurement

Moisture Error (g/kg)

Overall, model errors are similar for the three domains

Small domain is not an issue for ISU CRM

3-hourly precipitation

Observed surface precipitation rates are well simulated

(Courtesy of Xiaoqing Wu)

T, q biases are slightly larger with smaller domain forcing

(Courtesy of Xiaoqing Wu)

Summary

A reduced 2x2 (or 1.5x1.5) degree domain is comparable to a typical GCM grid box used in current climate models. Impact on the variational analysis is small and SCM/CRM respond well to the smaller scale forcing for both revised domains.

Pros:

- Save money for ARM
- Better resolve the subgrid scale variability in clouds and other important atmospheric fields with potentially denser network if the outside EFs are moved into the smaller domain
- Have the potential to get 3-d clouds
- Improve the comparison between models and data observed at CF
- Surface mesonet stations are more evenly distributed

Cons:

- CASA radars and both ARM and NOAA wind profilers are outside the revised domain ~ could be a loss
- Eliminate most ECOR stations (except for CF)

Summary

Suggestions:

- Prefer Domain B (1.5x1.5) ~ smaller than domain A (2.0x2.0) but larger enough for SCMs and CRMs.
- Keep the 6 EFs and CF within the reduced domain unchanged so that we can maintain long-term consistent measurements at those stations
- Move those outside EFs into the reduced network to increase the density of surface stations, especially for those stations equipped with the ECOR system
- Move CASA radars into the new domain if ARM is going to maintain the CASA radars
- Move ARM wind profilers
- NOAA wind profilers? the data has been used in the variational analysis so missing the NOAA wind profilers could be a loss, but this can be probably tolerated based on the test results from this study and using interpolated wind profiler data.

Questions and Comments?