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Introduction

Measurements from the atmospheric emitted radiance interferometer (AERI) are used within the
Atmospheric Radiation Measurement (ARM) Program to improve our understanding of the atmospheric
processes important for atmospheric radiation. One of the earliest ARM goals was the collection of high
gpectra resolution emission data for vaidation of radiative transfer modd (RTM) cdculaionsin the
infrared (IR). Over the years, the list of gpplications of AERI data have grown to include remote
sensing of atmospheric thermodynamic variables, atmospheric condtituents, and surface properties.
Fundamentd to the success of these gpplicationsis the radiometric accuracy of the AERI IR
atmospheric emisson measurements. This paper presents the theoretica accuracy estimates of the
AERI measurements and demonstrated performance derived from data collected in the [aboratory and in
the fidd.

Accuracy

The accuracy of AERI radiance measurements can be estimated through a perturbation analysis of the
cdibration equation given below (Revercomb et a. 1988; Knuteson et a. 1999).

&s- Ca 9

N =(By - BA)RemE Ba (1)

where N is the calibrated radiance spectrum, By isthe effective Planck emission for the hot blackbody,
Ba isthe effective Planck emission for the ambient blackbody, Csisthe complex spectrum for the sky
view, Cy isthe complex spectrum for the hot blackbody view, Ca is the complex spectrum for the
ambient blackbody view, and Re() isthe red part of the complex ratio. The complex spectraare smply
the Fourier transform of the observed interferogram. In the AERI systems for ARM, the instrument
measures 90 complex spectrain a 3.5-minute dwell period during the zenith sky view and 45 complex
gpectrain 100 seconds during each of the hot and ambient reference blackbody dwell periods. The hot
reference istypicaly controlled to +60° C while the ambient reference is unheated and floats close to the
outsde ambient temperature.
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The design god of the AERI systems is an absolute accuracy of 1% of ambient temperature Planck
radiance (or better). Figure 1 showsthe uncertainty in AERI cdlibration derived by perturbing each of
the variablesin Eq. (1) inturn. The result is presented both as aroot sum square of the individua error
components and as a“worst case’ sum of the absolute values of each error term (SUMABS).
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Figure 1. Theoretical accuracy estimates of the AERI radiance measurement at 770 cm™ as derived
from uncertainty estimates of the variables in the calibration equation compared to actual AERI
performance in laboratory tests.

The ability of the AERI to meet this challenging accuracy god has been accomplished by using well
characterized blackbodies integrated into the instrument as calibration references and viewing these
references often. The blackbodies used by the AERI system for ARM were designed and built &t the
Universty of Wisconsin Space Science and Engineering Center (UW-SSEC) specifically for the AERI
project. Figure 2 shows the UW-SSEC blackbody design and implementation used for the AERIs for
ARM.

The AERI blackbodies use a cavity approach, which provides high emissvity that can be well charac-
terized. The thick-waled duminum cavity is easy to machine and provides excellent heat conduction,
leading to low thermd gradients. The inner surface of the cavity is painted with Chemglaze Z306,
which provides a hardy, diffuse, and stable surface that has ahigh emissivity inthe IR. A diffuse
surface was chosen over a pecular onein order to minimize the impact of dight contamination (dust) on
the overdl cavity emissvity. The temperature sensors used by the AERI blackbody are Y SI 46041
Super Stable thermistors. The advertised stability of these sensorsis 0.01 K after 100 months at 70 K.
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Figure 2. AERI blackbodies used as on board calibration references for ARM.

In addition to their stability, these sensors are attractive because they are easily coupled, thermaly, to
the complicated cavity structure and they are reasonably rugged. The thermistor calibration iswell
characterized with three coefficients that are obtained at three different calibration points spanning the
desired temperature range.

The uncertainty in knowledge of the temperature and emissivity of the AERI blackbodiesis givenin

Table 1 for both aroot sum square and an absolute summeation of the individua error components.
Laboratory tests of the cdibration performance have been performed on each AERI system prior to
delivery and will be repested periodicdly. Figure 3 shows the result of one such test using an interme-
diate temperature (45°C) blackbody referencein the sky view and a blackbody submerged in anice bath
in the down view.

Table 1. AERI blackbody uncertainties.

Error Edimate | Root Sum Square || Absolute Sum
Temperature 0.057°C 0.098°C
Emissvity 0.0012 0.002

The laboratory performanceillustrated in Figure 3 can be compared against the theoretica uncertainty
estimate derived from Eq. (1). The error between the measured temperature at 770 cri* for a45°C and
0°C labtestisshown in Figure 1. The measured performance in the laboratory is well within the limits

of the theoretical uncertainty estimate, which is consstent with the expectation thet the actua

uncertainty for an individua instrument will be much better than the worst case estimate.
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Figure 3. Laboratory tests of the calibration performance of an AERI instrument.

In June of 1997, the AERI-01 hot and ambient blackbodies were replaced with new units and the
origindly ingtaled blackbodies were re-cdibrated using the dedicated AERI facilities at the University

of Wisconan. Fgure 4 illudrates that over the 30-month period from initid blackbody cdibration to the
re-caibration (December 1994 to June 1997), there was less than 0.05°C drift in the cavity temperature-
senang thermigtors. At the time of blackbody change-out, additional testing was performed on the
AERI-01 instrument that showed the thermistor resistance readout e ectronics drift (when converted to
equivaent temperature) was on the order of + 0.005°C. The June testing provided us the first demon-
dration of the excdlent long-term stability of the AERI blackbody thermistors and readout eectronics.
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Figure 4. AERI-01 blackbody thermistor drift over the 30-month period from December 1994 to June
1997. Over the temperature operating range of the ambient blackbody (-40 to +40°C) and at the hot
blackbody operating temperature of +60°C, the drift was less than 0.05°C. The thermistor resistance
readout electronics drift converted to equivalent temperature error was measured to be an order of
magnitude smaller than the thermistor drift shown above.
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We continue to monitor the blackbody temperature measurement stability of al the AERI blackbodiesin
order to better characterize long-term behavior. Animportant god for monitoring blackbody stability is
to define the maximum dlowable time between calibrations; this period is now estimated to be on the
order of 30 months.

In-the-field comparisons of AERI systems have been made routindly at the ARM Southern Greet Plains
(SGP) dte over the past severd years. Figure 5 showsthe leve of agreement that istypicaly found
between two AERI systems when viewing the same column of atmosphere during the same time period.
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Figure 5. Comparison of two downwelling radiance observations from two different AERI systems from
a field intercomparison performed at the SGP central facility on September 16, 1997, between

04:00 Universal Time Coordinates (UTC) and 05:00 UTC. The upper panel is an overlay of the two
observations (AERI-01 in blue and AERI-00 in red) averaged over a one-hour period. The lower panel

is the radiance difference (AERI-01 minus AERI-00). Note that one percent of ambient radiance is

about 1 mW/(m? sr cm™) at 1000 cm™ so the AERI-01/AERI-00 radiance difference is within the AERI
accuracy estimate.

Applications

The applications of AERI measurements cover a broad range of topics related to the atmospheric
temperature, radiatively important atmospheric congtituents, and the earth’ ssurface. A list of
goplications of AERI measurements is given below with reference to publications that provide more
detailed informetion:
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- planetary boundary layer temperature and water vapor retrievals (Feltz et a. 1999; Fdtz et d. 2000;
Schmit et a. 2000; Smith et a. 1999; Turner et a. 2000)

- sea surface temperature and emissivity (Smith et d. 1996; Minnett et d. 2000; Wu and Smith 1997)
- land surface emissivity (Bower et d. 1999)

- cloud radiative properties (Collard et . 1995; DeSlover et d. 1998; DeSlover et d. 1999)

- carbon monoxide and ozone retrievals (McMillin 1997)

- line-by-line aamospheric radiative transfer modd vaidation (Clough et a. 1997; Tobin et d. 1999,
Knuteson et d. 1998; Revercomb et al. 1990).
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